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Definition (CRWU context implicit for smoothness)

Let p € Nand X be a set.
e If p =0, then X is a single point: a 0—cell.

e If p > 0, then X is diffeomorphic to an open p—ball (open
interval, disk, ball): a p—cell.

p=0: point P =1:openinterval p=2: opendisk p = 3: open ball

’ e
open open



Regular Cell Complex
Let D € N, X a smooth D—manifold, and M C P(X) a set of
cells in X. We say M is a regular cell complex if:

(1) Forany a,b € M with a # b, eitheranNnb=2or anbisa
union of cells of strictly lower dimension.

(2) Forany a € M, its closure in X satisfies

clia) = {beM|bCa}.
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S
E7 1j\/v7 k
7777777777 - - The closure operator cl(c") returns a
E, Fo Es complex containing the k-cell o* and

Example Closures:

B, 4 p,  allits boundary cells.
B ‘ Closure of Face I, (2-Cell):
Eg oo 10 Cl(Fo) = {N1,Nz,Ng,N4}U{E1,E2,E3,E4}
U{Fo}
Closure of Edge E; (1-Cell):
cl(E1) = {N1, N2} U{E1}



Faces and Partial Order
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Remark (Face relation)

A regular cell complex M carries a partial order by inclusion:
a C b. We write a < b and say “a is a face of b”.

Hasse-type diagram (schematic)
V

/N

F F
/A / N\
Ey £y Ey E3
I AR

No N1 Ny Ns



Combinatorial Mesh
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Definition
A partially ordered set (M, <) is a combinatorial mesh if there

exists a manifold X and an embedding ¢ : M — P(X) whose
image is a regular cell complex in X.

Relational data (example)

Fo < Eo, En,
Fy < Ey, E3,
Ey < Ny, Ei < Ny, Nq,
Fy < Ny, No, FE3 < Ns.
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Abstract Cell Complex M Geometric Realization (M) C R”
(Cells defined by incidence and dimension)  (Mapping the cells to space)

0-Cells (N:)
No Ny Ny N3
(No)

#(Ng) b #(Ny)
1-Cells (E.)
Eg E E-
S G ¢(Fo) | ©(F1)

©(N3) »(Ng) ©(Ns)
2-Cells (F;)
Fo F1

o:M—=R" (Map/Embeading)



Combinatorial Polytopes and Digon
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If M is a combinatorial mesh, the set of p—cells is M,,. If D is the

maximum dimension, then M = U;j?:o M, If there exists a single
top D—cell containing all cells, the mesh is a combinatorial

polytope.

O0—polytope 1—polytope 2—polytope (digon) 3—polytope (cube)

- — O



Diamond Property
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Let M be a combinatorial mesh, p € N, a € M,;2 and c € M,,
with ¢ < a. Then there exist exactly two (p + 1)—cells
v, 0" € Mps1 such that

ce<xb, exb’ V<a UV <a.

a (p+2) Example p = 0

a (2—cell)

b// b’

N
N\ /

b’

o

()



Mk Diamond Property: p = 1 Example
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Cube Slice

a (face, p+2 = 3if p = 1in 3D chain)

11|

I c

Interpretation

Forp =1in 3D, let a be a face, c a vertex on a. Exactly two
edges ', b” on a meet at ¢, forming the diamond.



Relative Orientations
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Theorem (Relative Orientation)

Let M be a combinatorial mesh (CM). Then there exist signs
€(a,b) € {—1,1}, for any incident pair (a,b) € M, 1 x M, with

b < a (“bis a face of a”), called the relative orientation, such that
for each diamond

c € My, v, b e My, a€ Mpio, eV, V' <a,

the following holds:
e(a, ) et ,c) = — e(a,b”)e®”,c).

Moreover, if an edge E has endpoints (nodes) N, N”, then
e(E,N') = —e(E,N").
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CMC Diamond Structure (Local Incidence)




Chains and the Boundary Operator
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Let M be a combinatorial D—dimensional mesh. For
pe€{0,1,...,D} let

CpM = FreeR(Mp) = {Z)\laz Ai €R, a; € Mp}.
i=1

The space of all chains is CeM = @520 CpM.
Given a choice of relative orientations ¢, define
Op: CpM — Cp,1 M, Opa = Z €(a,b)b, a€ M,
b=<a
bGMp,1

If we fix the standard bases (cells ordered, with signs by ¢), the
matrix of 9, is denoted 9.



Example Mesh
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Triangular with a Diagonal

Adjacent Faces F(, F; Sharing Edges E; , E3,
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Chosen Orientations

Edges:
EO : N()—)Ng,

FEy : N3— Ny,
E5 : Ny — No,
E3, : N3— No,
Esp : No— Nj,
E4 : No— Np.

Faces (counterclockwise):
F() : (N0—>N3—>N2—)N()),
F1 g (N3—>N1 —>N2—>N3).



pek o Doundary on Edges and Faces
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Edge Boundaries (0, : C; — Cj)

01(Eo) = N3 — No, 01(E1) = N1 — N3, 01(E3) = No — Ny,
01(Es3q) = Na — N3, 01(Esp) = N3 — Na, 01(Fs) = Nog — Na.

Face Boundaries (0, : Cy; — (1)

02(Fo) = Eo + E3q + E4,
02(F1) = By + Eo + Esy,.




Boundary on Edges and Faces
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Matrices in the Ordered Bases

Let rows/cols be ordered as indicated under each matrix.
Eo Ei1 Ex Es. FEz Ey
No -1 0 0 O o0 1
51 = (81)E = 0 1 —1 0 0 0 N
No o 0 1 1 -1 -1
Nal1 -1 0 -1 1 0

Eo
Ey

ESa
Esp




Nilpotency of the Boundary: 9o d = 0
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Theorem (Chain Complex Property)

For any combinatorial mesh M and any p € N,
8p o 8p+1 =0 : Cp+1M — Cp_lM,

equivalently, in matrix form,
5p5p+1 =0 c R|Mp—l|X|Mp+1‘.



Example
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Verification in the Example

Using the previous matrices,

10
-1 0 0 0 o0 17|01 0 0
59,0 1 -1 0 0 0]|]0o1]_|00
192 0O 0 1 1 -1 —1|1|1 0 0 0
1 -1 0 -1 1 oflo 1 0 0

1 0

lllustrating 92 (F) = 0 (The boundary of a face is a nl]ll cycle)

Fo: 0y(Fo) = 01(Eo) + 01(E1) + 01 (Ey) = 0
F1 5 82<F1) = —81<E0) - 81(E1) + (91(E3) = 0

where F; are the 2-cells (faces) and E; are the 1-cells (edges).

0y, is the boundary operator from k-cells to (k — 1)-cells.
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Boundary Operator and Chain Complex

For a combinatorial D-mesh M, the chain spaces (C’J[,M)Z?:0 with
boundary maps

Op—1 o

CpM 225 cp_ M y oo oM 2

CoM

form a chain complex.
Chain complex property: Opo0pt1 =0, Vpe{0,...,D—1}

) O B B
cpM —L s cp o 2P 2 oM —2 oo

20
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Definition (Cochains and Coboundary)

Let (M, €) be a D-dimensional CM with a fixed system of relative

orientations. For p € {0, ..., D}, the space of p—cochains is the
R-linear dual
D
CPM := (C,M)*,  C°M :={PCPM.
p=0

Choose dual bases concretely:

: (N° NY,...)dualto (Ng, Ny, ...),
: (E°, E',...)dualto (Ey, Ey,...),
2 (
:

F° F' .. .)dualto (Fy, Fi,...),

0
1
2
3: (VO v .. ) dualto (Vo,Vi,...).

BRI

21



My Cochains and Coboundary
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Definition (Cochains and Coboundary)

The coboundary operators 4, : CPM — CPT1)M are the duals of
Opt1:
6p0 = 00041 € CPTIM, oy = Opt1-

Cochain Complex Property

Spp106, =0, Vpe{0,...,D—1}.

5o 5 dp—1
M ——— C'M o CPIM —— CPM

22



Coboundary Matrices and Actions
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Triangular Mesh with a Diagonal

Ny

Ey E3 \E>
Fy §2)

23
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Coboundary Matrices 4, 6,

From the consistent boundary operators 9; € R**?, 95 € R?*2:

NO N1 N2 N3 ]
E° -1 0 0 1
- =T £ 0o 1 0 -1
=0 =g | o 3 1 g |
E3
0 0 1 -1
E4
| 1 0 -1 0 |

o

Ff10011
F 10 1 1 -1 0

|
=

Il
Ql

24
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Actions on Cochains

Leto € C°M and p € C' M. Then

(600)(E3) = 0(01E3) = 0(Na — N3) = o(Nz) — o(N3),

(01p)(Fo) = f(02Fo) = p(Eo + E3 + Es) = p(Eo) + p(E3) + p(Ey),
(61p)(F1) = p(02F1) = p(E1 + Ez — E3) = p(E1) + p(E2) — p(E3).

Historical Note: Georges de Rham

Georges de Rham (1903-1990) was a Swiss mathematician who
pioneered the connection between differential forms and
topology. His work led to the de Rham theorem, establishing the
equivalence between differential and topological cohomology -
the foundation of the modern de Rham map. see next

25



de Rharm Map
Let X be a smooth manifold with dim X = D, and let M be a CM
embedded by ¢ : M — P(X). Forp € {0,..., D}, define

R, : QP(X) — CPM, (Rpw)(c) := / w, c¢€ My,
®(c)
and extend by linearity to chains.

Example on the Interval X = [0, 2]

Nodes: Ny, N1, N; at z =0, 1,2. Edges: Ey = [0, 1], E1 = [1,2]
with the natural left-to-right orientation.

26
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Concrete Evaluation

For p = 0 (functions f € QO( ))'
(Rof) (N, / f= )s 7o =0, v1 =1, 22 = 2.

Forp=1 (w = g(z)dr € Q'(X)):
1 2
(Ruw)(Bo) = /0 o(@)de,  (Ruw)(Er) = / o(z) d.

Thus Ry : Q° — CYM samples at nodes; R; : Q' — C'M
integrates along oriented edges.

27



e Discrete Stokes—Cartan

The University of Manchester

Theorem (de Rham—-Coboundary Commutativity)

Forp e {0,...,D — 1},
Rypr10dy, = opo Ry

Qr(X) L} QPHL(X)

Rpl iRerl
CPM —— Pty
517

Specialization (e.g. D = 3)

For p = 0, 1, 2 the same commutative diagram holds with QP (R3)
and CPM (vertices, edges, faces) embedded in X = R?3 by ¢.

28



Discrete and Smooth Trace
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Definition (Discrete Trace)

Let L C M be a submesh. The trace
tr, : C°M — C”L, (trpo)(c) = o(c), ce Ly,
is restriction of cochains to L.

Compatibility (Smooth vs Discrete Trace)

Let tr)™ : QP(X) — QP(0X) be the smooth trace (pullback to the
boundary). Then the de Rham maps commute with trace:

tr,oR, = R otr™,

where RpL : QP(0X) — CPL is the de Rham map on the submesh
L.

29



Commutative Diagram
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Summary of Combinatorial Foundations
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Discrete Geometry Essentials

p—cells: Basic building blocks — single points (p=0) or open
p—balls (p>0).

Regular cell complex: A collection of cells closed under
intersection and face closure, i.e. cl(a) = U, b-

Combinatorial mesh: A partially ordered set (1, <) that
can be embedded into a smooth manifold X such that its
image forms a regular cell complex.

Polytopes: Meshes with one top D—cell — segments (1D),
polygons (2D), cubes/tetrahedra (3D), etc.

Diamond property: For a € M, o, ce M, with c<a, there
exist exactly two (p+1)—cells b’ and b” such that c<¥', " <a.

31



Summary of Chain Complex Structure
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Orientation and Boundary Operators

¢ Relative orientation: ¢(a,b) € {£1} defines the signed
incidence between adjacent cells satisfying
e(a,b)e(t), c) = —€(a, b")e(b”, o).
e Chains: C,M = Freer(M,,) - linear combinations of oriented
p—cells.
e Boundary operator:
Op(a) =) €(a,b)b,  Fpp10pp2 =0.

b<a

e Example (triangular cell with diagonal): Explicit 01, 9>
matrices verified 9,0, = 0.

32



Summary of Discrete Differential
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Dual Spaces and Operators

Cochains: C?M = (C,M)* - linear duals of p—chains.

Coboundary operator: ¢/, = 8§+1 defines the discrete
analogue of the exterior derivative, satisfying 4,41 o 6, = 0.

Example: Explicit matrices &y, d; act on cochains:
(600)(Ei) = 0(O1E;), (81p)(F}) = p(02F5).
de Rham map: R, : Q”(X)— CPM with
Ryr10d=240,0R,,

establishing equivalence between smooth and discrete
calculus.

Trace consistency: tri*¢oRM = RLo tr5mooth,

33
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