

Combinatorial Mesh Calculus (CMC): Lecture 14

Lectured by: Dr. Kiprian Berbatov¹
Lecture Notes Compiled by: Muhammad Azeem¹

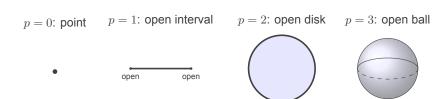
Under the supervision of: Prof. Andrey P. Jivkov¹

 $^{^{1}}$ Department of Mechanical and Aerospace Engineering, The University of Manchester, Oxford Road,

Definition (CRWU context implicit for smoothness)

Let $p \in \mathbb{N}$ and X be a set.

- If p = 0, then X is a single point: a 0–cell.
- If p > 0, then X is diffeomorphic to an open p-ball (open interval, disk, ball): a p-cell.



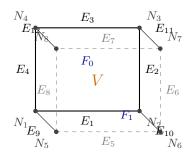
MANCHESTER Regular Cell Complex

Definition

Let $D \in \mathbb{N}$, X a smooth D-manifold, and $\mathcal{M} \subseteq \mathcal{P}(X)$ a set of cells in X. We say \mathcal{M} is a regular cell complex if:

- (1) For any $a, b \in \mathcal{M}$ with $a \neq b$, either $a \cap b = \emptyset$ or $a \cap b$ is a union of cells of strictly lower dimension.
- (2) For any $a \in \mathcal{M}$, its closure in X satisfies

$$cl(a) = \bigcup \{ b \in \mathcal{M} \mid b \subseteq a \}.$$

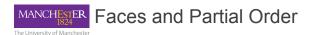


The closure operator $\operatorname{cl}(\sigma^k)$ returns a complex containing the k-cell σ^k and all its boundary cells. **Example Closures:**

Closure of Face F_0 (2-Cell): $\operatorname{cl}(F_0) = \{N_1, N_2, N_3, N_4\} \cup \{E_1, E_2, E_3, E_4\} \cup \{F_0\}$

Closure of Edge E_1 (1-Cell):

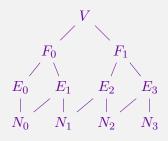
$$\mathsf{cl}(E_1) = \{N_1, N_2\} \cup \{E_1\}$$



Remark (Face relation)

A regular cell complex \mathcal{M} carries a partial order by inclusion: $a \subseteq b$. We write $a \leq b$ and say "a is a *face* of b".

Hasse-type diagram (schematic)



MANCHESTER Combinatorial Mesh

Definition

A partially ordered set (\mathcal{M}, \leq) is a *combinatorial mesh* if there exists a manifold X and an embedding $\varphi: \mathcal{M} \to \mathcal{P}(X)$ whose image is a regular cell complex in X.

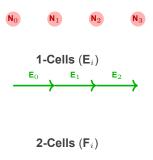
Relational data (example)

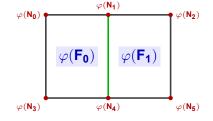
$$F_0 \prec E_0, E_1,$$

 $F_1 \prec E_2, E_3,$
 $E_0 \prec N_0, E_1 \prec N_0, N_1,$
 $E_2 \prec N_1, N_2, E_3 \prec N_2.$

Abstract Cell Complex M Geometric Realization $\varphi(M) \subset \mathbb{R}^n$

(Cells defined by incidence and dimension) (Mapping the cells to space) **0-Cells** (N_i)





$$\varphi: \mathbf{M} \xrightarrow{} \mathbb{R}^{\mathbf{n}}$$
 (Map/Embedding)

MANCHESIER Combinatorial Polytopes and Digon

Remark

If \mathcal{M} is a combinatorial mesh, the set of p-cells is \mathcal{M}_p . If D is the maximum dimension, then $\mathcal{M} = \bigcup_{p=0}^{D} \mathcal{M}_{p}$. If there exists a single top D-cell containing all cells, the mesh is a combinatorial polytope.

0-polytope

1-polytope

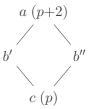
2-polytope (digon) 3-polytope (cube)

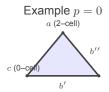
MANCHESTER Diamond Property

Proposition

Let \mathcal{M} be a combinatorial mesh, $p \in \mathbb{N}$, $a \in \mathcal{M}_{p+2}$ and $c \in \mathcal{M}_p$ with $c \leq a$. Then there exist exactly two (p+1)-cells $b', b'' \in \mathcal{M}_{p+1}$ such that

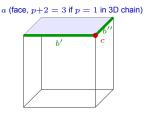
$$c \leq b', \quad c \leq b'', \qquad b' \leq a, \quad b'' \leq a.$$





MANCHESIER Diamond Property: p = 1 Example

Cube Slice



Interpretation

For p = 1 in 3D, let a be a face, c a vertex on a. Exactly two edges b', b'' on a meet at c, forming the diamond.

MANCHESTER Relative Orientations

Theorem (Relative Orientation)

Let M be a combinatorial mesh (CM). Then there exist signs $\epsilon(a,b) \in \{-1,1\}$, for any incident pair $(a,b) \in M_{p+1} \times M_p$ with $b \prec a$ ("b is a face of a"), called the *relative orientation*, such that for each diamond

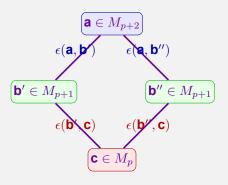
$$c \in M_p$$
, $b', b'' \in M_{p+1}$, $a \in M_{p+2}$, $c \leq b', b'' \leq a$,

the following holds:

$$\epsilon(a, b') \epsilon(b', c) = -\epsilon(a, b'') \epsilon(b'', c).$$

Moreover, if an edge E has endpoints (nodes) N', N'', then $\epsilon(E, N') = -\epsilon(E, N'').$

CMC Diamond Structure (Local Incidence)



MANCHESIER Chains and the Boundary Operator

Definition

Let M be a combinatorial D-dimensional mesh. For $p \in \{0, 1, \dots, D\}$ let

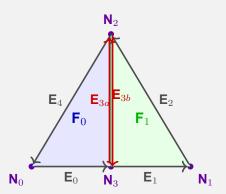
$$C_pM:=\mathsf{Free}_{\mathbb{R}}(M_p)=\Big\{\sum_{i=1}^n\lambda_ia_i\ \Big|\ \lambda_i\in\mathbb{R},\ a_i\in M_p\Big\}.$$

The space of all chains is $C_{\bullet}M = \bigoplus_{n=0}^{D} C_{n}M$. Given a choice of relative orientations ϵ , define

$$\partial_p : C_p M \longrightarrow C_{p-1} M, \qquad \partial_p a = \sum_{\substack{b \prec a \\ b \in M_{p-1}}} \epsilon(a, b) b, \quad a \in M_p.$$

If we fix the standard bases (cells ordered, with signs by ϵ), the matrix of ∂_n is denoted $\overline{\partial}_n$.

Triangular with a Diagonal



Adjacent Faces F_0 , F_1 Sharing Edges E_{3a} , E_{3b}

Chosen Orientations

Edges:

$$E_0: N_0 \to N_3,$$

 $E_1: N_3 \to N_1,$
 $E_2: N_1 \to N_2,$
 $E_{3a}: N_3 \to N_2,$
 $E_{3b}: N_2 \to N_3,$
 $E_4: N_2 \to N_0.$

Faces (counterclockwise):

$$F_0: (N_0 \to N_3 \to N_2 \to N_0),$$

 $F_1: (N_3 \to N_1 \to N_2 \to N_3).$

MANCHESIER Boundary on Edges and Faces

Edge Boundaries $(\partial_1: C_1 \to C_0)$

$$\partial_1(E_0) = N_3 - N_0, \quad \partial_1(E_1) = N_1 - N_3, \quad \partial_1(E_2) = N_2 - N_1,$$

 $\partial_1(E_{3a}) = N_2 - N_3, \quad \partial_1(E_{3b}) = N_3 - N_2, \quad \partial_1(E_4) = N_0 - N_2.$

Face Boundaries $(\partial_2: C_2 \to C_1)$

$$\partial_2(F_0) = E_0 + E_{3a} + E_4,$$

 $\partial_2(F_1) = E_1 + E_2 + E_{3b}.$

MANCHESIER Boundary on Edges and Faces

Matrices in the Ordered Bases

Let rows/cols be ordered as indicated under each matrix.

$$\overline{\partial}_{1} = (\partial_{1})_{E}^{N} = \begin{pmatrix} N_{0} & E_{1} & E_{2} & E_{3a} & E_{3b} & E_{4} \\ -1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & -1 & -1 \\ 1 & -1 & 0 & -1 & 1 & 0 \end{pmatrix},$$

$$\overline{\partial}_{2} = (\partial_{2})_{F}^{E} = \begin{bmatrix} E_{0} & F_{1} \\ E_{1} & 0 \\ 0 & 1 \\ E_{3a} & 0 \\ E_{3b} & E_{4} \end{bmatrix}.$$

MANCHESIER Nilpotency of the Boundary: $\partial \circ \partial = 0$

Theorem (Chain Complex Property)

For any combinatorial mesh M and any $p \in \mathbb{N}$,

$$\partial_p \circ \partial_{p+1} = 0 : C_{p+1}M \longrightarrow C_{p-1}M,$$

equivalently, in matrix form,

$$\overline{\partial}_p \, \overline{\partial}_{p+1} = \overline{0} \in \mathbb{R}^{|M_{p-1}| \times |M_{p+1}|}.$$

Verification in the Example

Using the previous matrices,

$$\overline{\partial}_1 \, \overline{\partial}_2 = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & -1 & -1 \\ 1 & -1 & 0 & -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Illustrating $\partial_2(\mathbf{F}) = 0$ (The boundary of a face is a null cycle)

$$\mathbf{F}_0: \quad \partial_2(\mathbf{F}_0) = \partial_1(\mathbf{E}_0) + \partial_1(\mathbf{E}_1) + \partial_1(\mathbf{E}_2) = \mathbf{0}$$

$$\mathbf{F}_1: \quad \partial_2(\mathbf{F}_1) = -\partial_1(\mathbf{E}_0) - \partial_1(\mathbf{E}_1) + \partial_1(\mathbf{E}_3) = \mathbf{0}$$

where \mathbf{F}_i are the 2-cells (faces) and \mathbf{E}_i are the 1-cells (edges). ∂_k is the boundary operator from k-cells to (k-1)-cells.

Boundary Operator and Chain Complex

For a combinatorial D-mesh M, the chain spaces $(C_p M)_{p=0}^D$ with boundary maps

$$C_D M \xrightarrow{\partial_D} C_{D-1} M \xrightarrow{\partial_{D-1}} \cdots \xrightarrow{\partial_2} C_1 M \xrightarrow{\partial_1} C_0 M$$

form a chain complex.

Chain complex property:
$$\partial_p \circ \partial_{p+1} = 0$$
, $\forall p \in \{0, \dots, D-1\}$.

$$C_DM \xrightarrow{\partial_D} C_{D-1}M \xrightarrow{\partial_{D-1}} \cdots \xrightarrow{\partial_2} C_1M \xrightarrow{\partial_1} C_0M$$

◆ロト→御ト→三ト→三 りへ○

MANCHESIER Cochains and Coboundary

Definition (Cochains and Coboundary)

Let (M, ϵ) be a *D*-dimensional CM with a fixed system of relative orientations. For $p \in \{0, \dots, D\}$, the space of p-cochains is the R-linear dual

$$C^pM := (C_pM)^*, \qquad C^{\bullet}M := \bigoplus_{p=0}^D C^pM.$$

Choose dual bases concretely:

$$p=0: \ (N^0,N^1,\dots) \ {\sf dual \ to} \ (N_0,N_1,\dots),$$
 $p=1: \ (E^0,E^1,\dots) \ {\sf dual \ to} \ (E_0,E_1,\dots),$ $p=2: \ (F^0,F^1,\dots) \ {\sf dual \ to} \ (F_0,F_1,\dots),$ $p=3: \ (V^0,V^1,\dots) \ {\sf dual \ to} \ (V_0,V_1,\dots).$

MANCHESIER Cochains and Coboundary

Definition (Cochains and Coboundary)

The coboundary operators $\delta_p: C^pM \to C^{p+1}M$ are the duals of ∂_{p+1} :

$$\delta_p \sigma = \sigma \circ \partial_{p+1} \in C^{p+1} M, \quad \overline{\delta}_p = \overline{\partial}_{p+1}^\mathsf{T}.$$

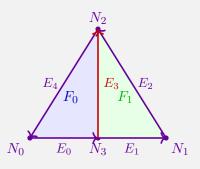
Cochain Complex Property

$$\delta_{p+1} \circ \delta_p = 0, \quad \forall p \in \{0, \dots, D-1\}.$$

$$C^0M \xrightarrow{\delta_0} C^1M \xrightarrow{\delta_1} \cdots \xrightarrow{\delta_{D-2}} C^{D-1}M \xrightarrow{\delta_{D-1}} C^DM$$

MANCHESIER Coboundary Matrices and Actions

Triangular Mesh with a Diagonal



Coboundary Matrices $\overline{\delta}_0, \overline{\delta}_1$

From the consistent boundary operators $\overline{\partial}_1 \in \mathbb{R}^{4 \times 5}$, $\overline{\partial}_2 \in \mathbb{R}^{5 \times 2}$:

$$\overline{\delta}_0 = \overline{\partial}_1^\mathsf{T} = \begin{bmatrix} E^0 & N^1 & N^2 & N^3 \\ E^1 & 0 & 0 & 1 \\ E^2 & 0 & 1 & 0 & -1 \\ E^3 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix},$$

$$\overline{\delta}_1 = \overline{\partial}_2^{\mathsf{T}} = \begin{array}{cccc} F^0 & \boxed{ \begin{bmatrix} E^0 & E^1 & E^2 & E^3 & E^4 \\ \hline 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 & 0 \end{bmatrix}}.$$

Actions on Cochains

Let $\sigma \in C^0M$ and $\rho \in C^1M$. Then

$$(\delta_0 \sigma)(E_3) = \sigma(\partial_1 E_3) = \sigma(N_2 - N_3) = \sigma(N_2) - \sigma(N_3),$$

$$(\delta_1 \rho)(F_0) = \rho(\partial_2 F_0) = \rho(E_0 + E_3 + E_4) = \rho(E_0) + \rho(E_3) + \rho(E_4),$$

$$(\delta_1 \rho)(F_1) = \rho(\partial_2 F_1) = \rho(E_1 + E_2 - E_3) = \rho(E_1) + \rho(E_2) - \rho(E_3).$$

Historical Note: Georges de Rham

Georges de Rham (1903–1990) was a Swiss mathematician who pioneered the connection between differential forms and topology. His work led to the **de Rham theorem**, establishing the equivalence between differential and topological cohomology - the foundation of the modern de Rham map. See next

MANCHESTER de Rham Map

he University of Manchester

Definition

Let X be a smooth manifold with dim X=D, and let M be a CM embedded by $\varphi:M\hookrightarrow \mathcal{P}(X)$. For $p\in\{0,\ldots,D\}$, define

$$R_p: \Omega^p(X) \to C^p M, \qquad (R_p \omega)(c) := \int_{\varphi(c)} \omega, \quad c \in M_p,$$

and extend by linearity to chains.

Example on the Interval X = [0, 2]

Nodes: N_0, N_1, N_2 at x = 0, 1, 2. Edges: $E_0 = [0, 1]$, $E_1 = [1, 2]$ with the natural left-to-right orientation.

$$\begin{array}{c|c}
E_0 & E_1 \\
\hline
N_0(0) & N_1(1) & N_2(2)
\end{array}$$

Concrete Evaluation

For p=0 (functions $f\in\Omega^0(X)$):

$$(R_0 f)(N_i) = \int_{\{x_i\}} f = f(x_i), \quad x_0 = 0, \ x_1 = 1, \ x_2 = 2.$$

For p=1 ($\omega=g(x)\,dx\in\Omega^1(X)$):

$$(R_1\omega)(E_0) = \int_0^1 g(x) dx, \qquad (R_1\omega)(E_1) = \int_1^2 g(x) dx.$$

Thus $R_0:\Omega^0\to C^0M$ samples at nodes; $R_1:\Omega^1\to C^1M$ integrates along oriented edges.

MANCHESTER Discrete Stokes—Cartan

Theorem (de Rham–Coboundary Commutativity)

For
$$p \in \{0, \dots, D-1\}$$
,
$$R_{p+1} \circ d_p \ = \ \delta_p \circ R_p.$$

$$\Omega^{p}(X) \xrightarrow{d_{p}} \Omega^{p+1}(X)$$

$$R_{p} \downarrow \qquad \qquad \downarrow R_{p+1}$$

$$C^{p}M \xrightarrow{\delta_{p}} C^{p+1}M$$

Specialization (e.g. D=3)

For p = 0, 1, 2 the same commutative diagram holds with $\Omega^p(\mathbb{R}^3)$ and C^pM (vertices, edges, faces) embedded in $X=\mathbb{R}^3$ by φ .

MANCHESIER Discrete and Smooth Trace

Definition (Discrete Trace)

Let $L \subseteq M$ be a submesh. The trace

$$\operatorname{tr}_p: C^pM \longrightarrow C^pL, \qquad (\operatorname{tr}_p\sigma)(c) \ = \ \sigma(c), \quad c \in L_p,$$

is restriction of cochains to L.

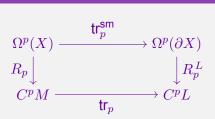
Compatibility (Smooth vs Discrete Trace)

Let $\operatorname{tr}_n^{\operatorname{sm}}:\Omega^p(X)\to\Omega^p(\partial X)$ be the smooth trace (pullback to the boundary). Then the de Rham maps commute with trace:

$$\operatorname{tr}_p \circ R_p = R_p^L \circ \operatorname{tr}_p^{\operatorname{sm}},$$

where $R_n^L:\Omega^p(\partial X)\to C^pL$ is the de Rham map on the submesh

MANCHESIER Commutative Diagram



MANCHESTER Summary of Combinatorial Foundations

Discrete Geometry Essentials

- p-cells: Basic building blocks single points (p=0) or open p-balls (p>0).
- Regular cell complex: A collection of cells closed under intersection and face closure, i.e. $cl(a) = \bigcup_{b \subset a} b$.
- Combinatorial mesh: A partially ordered set (M, \preceq) that can be embedded into a smooth manifold X such that its image forms a regular cell complex.
- **Polytopes:** Meshes with one top D-cell segments (1D), polygons (2D), cubes/tetrahedra (3D), etc.
- Diamond property: For $a \in M_{p+2}, c \in M_p$ with $c \prec a$, there exist exactly two (p+1)-cells b' and b'' such that $c \prec b', b'' \prec a$.

MANCHESTER Summary of Chain Complex Structure

Orientation and Boundary Operators

- Relative orientation: $\epsilon(a,b) \in \{\pm 1\}$ defines the signed incidence between adjacent cells satisfying $\epsilon(a,b')\epsilon(b',c) = -\epsilon(a,b'')\epsilon(b'',c).$
- Chains: $C_nM = \operatorname{Free}_{\mathbb{R}}(M_p)$ linear combinations of oriented *p*-cells.
- Boundary operator:

$$\partial_p(a) = \sum_{b \prec a} \epsilon(a, b) b, \qquad \partial_{p+1} \circ \partial_{p+2} = 0.$$

• Example (triangular cell with diagonal): Explicit ∂_1 , ∂_2 matrices verified $\overline{\partial}_1 \overline{\partial}_2 = 0$.

MANCHESIER Summary of Discrete Differential

Dual Spaces and Operators

- Cochains: $C^pM = (C_nM)^*$ linear duals of p-chains.
- Coboundary operator: $\delta_p = \partial_{p+1}^T$ defines the discrete analogue of the exterior derivative, satisfying $\delta_{p+1} \circ \delta_p = 0$.
- **Example:** Explicit matrices $\overline{\delta}_0$, $\overline{\delta}_1$ act on cochains:

$$(\delta_0 \sigma)(E_i) = \sigma(\partial_1 E_i), \quad (\delta_1 \rho)(F_j) = \rho(\partial_2 F_j).$$

• de Rham map: $R_p: \Omega^p(X) \to C^pM$ with

$$R_{p+1} \circ d = \delta_p \circ R_p,$$

establishing equivalence between smooth and discrete calculus.

• Trace consistency: $\operatorname{tr}_p^{\operatorname{disc}} \circ R_p^M = R_p^L \circ \operatorname{tr}_p^{\operatorname{smooth}}$.

