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p–Cells

Definition (CRWU context implicit for smoothness)

Let p ∈ N and X be a set.

• If p = 0, then X is a single point: a 0–cell.

• If p > 0, then X is diffeomorphic to an open p–ball (open
interval, disk, ball): a p–cell.

p = 0: point p = 1: open interval

open open

p = 2: open disk p = 3: open ball
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Regular Cell Complex

Definition

Let D ∈ N, X a smooth D–manifold, and M ⊆ P(X) a set of

cells in X. We say M is a regular cell complex if:

(1) For any a, b ∈ M with a 6= b, either a ∩ b = ∅ or a ∩ b is a
union of cells of strictly lower dimension.

(2) For any a ∈ M, its closure in X satisfies

cl(a) =
⋃

{ b ∈ M | b ⊆ a }.
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The closure operator cl(σk) returns a
complex containing the k-cell σk and

all its boundary cells.
Example Closures:

Closure of Face F0 (2-Cell):
cl(F0) = {N1, N2, N3, N4} ∪ {E1, E2, E3, E4}
∪{F0}
Closure of Edge E1 (1-Cell):

cl(E1) = {N1, N2} ∪ {E1}
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Faces and Partial Order

Remark (Face relation)

A regular cell complex M carries a partial order by inclusion:

a ⊆ b. We write a 4 b and say “a is a face of b”.

Hasse-type diagram (schematic)

V

F0 F1

E0 E1 E2 E3

N0 N1 N2 N3
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Combinatorial Mesh

Definition

A partially ordered set (M,4) is a combinatorial mesh if there

exists a manifold X and an embedding ϕ : M → P(X) whose
image is a regular cell complex in X.

Relational data (example)

F0 ≺ E0, E1,

F1 ≺ E2, E3,

E0 ≺ N0, E1 ≺ N0, N1,

E2 ≺ N1, N2, E3 ≺ N2.

6



Example

Abstract Cell Complex M
(Cells defined by incidence and dimension)

0-Cells (Ni)

N0 N1 N2 N3

1-Cells (Ei)
E0 E1 E2

2-Cells (Fi)

F0 F1

Geometric Realization ϕ(M) ⊂ Rn

(Mapping the cells to space)

ϕ(N0)
ϕ(N1)

ϕ(N2)

ϕ(N3) ϕ(N4) ϕ(N5)

ϕ(F0) ϕ(F1)

ϕ : M → Rn (Map/Embedding)
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Combinatorial Polytopes and Digon

Remark

If M is a combinatorial mesh, the set of p–cells is Mp. If D is the

maximum dimension, then M =
⋃D

p=0Mp. If there exists a single

top D–cell containing all cells, the mesh is a combinatorial

polytope.

0–polytope 1–polytope 2–polytope (digon) 3–polytope (cube)
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Diamond Property

Proposition

Let M be a combinatorial mesh, p ∈ N, a ∈ Mp+2 and c ∈ Mp

with c 4 a. Then there exist exactly two (p+ 1)–cells
b′, b′′ ∈ Mp+1 such that

c 4 b′, c 4 b′′, b′ 4 a, b′′ 4 a.

a (p+2)

b′ b′′

c (p)

Example p = 0
a (2–cell)

c (0–cell)

b′

b′′
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Diamond Property: p = 1 Example

Cube Slice

a (face, p+2 = 3 if p = 1 in 3D chain)

b′
b′′

c

Interpretation

For p = 1 in 3D, let a be a face, c a vertex on a. Exactly two
edges b′, b′′ on a meet at c, forming the diamond.

10



Relative Orientations

Theorem (Relative Orientation)

Let M be a combinatorial mesh (CM). Then there exist signs

ε(a, b) ∈ {−1, 1}, for any incident pair (a, b) ∈ Mp+1 ×Mp with

b ≺ a (“b is a face of a”), called the relative orientation, such that

for each diamond

c ∈ Mp, b′, b′′ ∈ Mp+1, a ∈ Mp+2, c 4 b′, b′′ 4 a,

the following holds:

ε(a, b′) ε(b′, c) = − ε(a, b′′) ε(b′′, c).

Moreover, if an edge E has endpoints (nodes) N ′, N ′′, then

ε(E,N ′) = − ε(E,N ′′).
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Example

a ∈ Mp+2

b′ ∈ Mp+1 b′′ ∈ Mp+1

c ∈ Mp

ε(a,b′) ε(a,b′′)

ε(b′,c) ε(b′′,c)

CMC Diamond Structure (Local Incidence)
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Chains and the Boundary Operator

Definition

Let M be a combinatorial D–dimensional mesh. For

p ∈ {0, 1, . . . , D} let

CpM := FreeR(Mp) =
{ n∑

i=1

λiai

∣∣∣ λi ∈ R, ai ∈ Mp

}
.

The space of all chains is C•M =
⊕D

p=0CpM .

Given a choice of relative orientations ε, define

∂p : CpM −→ Cp−1M, ∂pa =
∑
b≺a

b∈Mp−1

ε(a, b) b, a ∈ Mp.

If we fix the standard bases (cells ordered, with signs by ε), the
matrix of ∂p is denoted ∂p.
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Example Mesh

Triangular with a Diagonal

N0 N1

N2

N3

F0 F1

E0 E1

E2E4 E3a
E3b

Adjacent Faces F0,F1 Sharing Edges E3a,E3b
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Example

Chosen Orientations

Edges:

E0 : N0→N3,

E1 : N3→N1,

E2 : N1→N2,

E3a : N3→N2,

E3b : N2→N3,

E4 : N2→N0.

Faces (counterclockwise):

F0 : (N0→N3→N2→N0),

F1 : (N3→N1→N2→N3).
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Boundary on Edges and Faces

Edge Boundaries (∂1 : C1 → C0)

∂1(E0) = N3 −N0, ∂1(E1) = N1 −N3, ∂1(E2) = N2 −N1,

∂1(E3a) = N2 −N3, ∂1(E3b) = N3 −N2, ∂1(E4) = N0 −N2.

Face Boundaries (∂2 : C2 → C1)

∂2(F0) = E0 + E3a + E4,

∂2(F1) = E1 + E2 + E3b.
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Boundary on Edges and Faces

Matrices in the Ordered Bases

Let rows/cols be ordered as indicated under each matrix.

∂1 =
(
∂1
)N
E

=

N0

N1

N2

N3


E0 E1 E2 E3a E3b E4

−1 0 0 0 0 1
0 1 −1 0 0 0
0 0 1 1 −1 −1
1 −1 0 −1 1 0

 ,

∂2 =
(
∂2
)E
F
=

E0

E1

E2

E3a

E3b

E4



F0 F1

1 0
0 1
0 1
1 0
0 1
1 0


.
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Nilpotency of the Boundary: ∂ ◦ ∂ = 0

Theorem (Chain Complex Property)

For any combinatorial mesh M and any p ∈ N,
∂p ◦ ∂p+1 = 0 : Cp+1M −→ Cp−1M,

equivalently, in matrix form,

∂p ∂p+1 = 0 ∈ R |Mp−1|×|Mp+1|.
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Example

Verification in the Example

Using the previous matrices,

∂1 ∂2 =


−1 0 0 0 0 1
0 1 −1 0 0 0
0 0 1 1 −1 −1
1 −1 0 −1 1 0




1 0
0 1
0 1
1 0
0 1
1 0

 =


0 0
0 0
0 0
0 0

 .

Illustrating ∂2(F) = 0 (The boundary of a face is a null cycle)

F0 : ∂2(F0) = ∂1(E0) + ∂1(E1) + ∂1(E2) = 0

F1 : ∂2(F1) = −∂1(E0)− ∂1(E1) + ∂1(E3) = 0

where Fi are the 2-cells (faces) and Ei are the 1-cells (edges).

∂k is the boundary operator from k-cells to (k − 1)-cells.
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Remark

Boundary Operator and Chain Complex

For a combinatorial D–mesh M , the chain spaces (CpM)Dp=0 with

boundary maps

CDM
∂D−−→ CD−1M

∂D−1−−−−→ · · · ∂2−−→ C1M
∂1−−→ C0M

form a chain complex.

Chain complex property: ∂p ◦ ∂p+1 = 0, ∀ p ∈ {0, . . . , D − 1}.

CDM CD−1M · · · C1M C0M
∂D ∂D−1 ∂2 ∂1
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Cochains and Coboundary

Definition (Cochains and Coboundary)

Let (M, ε) be a D–dimensional CM with a fixed system of relative

orientations. For p ∈ {0, . . . , D}, the space of p–cochains is the
R–linear dual

CpM := (CpM)∗, C•M :=

D⊕
p=0

CpM.

Choose dual bases concretely:

p = 0 : (N0, N1, . . . ) dual to (N0, N1, . . . ),

p = 1 : (E0, E1, . . . ) dual to (E0, E1, . . . ),

p = 2 : (F 0, F 1, . . . ) dual to (F0, F1, . . . ),

p = 3 : (V 0, V 1, . . . ) dual to (V0, V1, . . . ).
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Cochains and Coboundary

Definition (Cochains and Coboundary)

The coboundary operators δp : C
pM → Cp+1M are the duals of

∂p+1:

δpσ = σ ◦ ∂p+1 ∈ Cp+1M, δp = ∂
T
p+1.

Cochain Complex Property

δp+1 ◦ δp = 0, ∀ p ∈ {0, . . . , D − 1}.

C0M C1M · · · CD−1M CDM
δ0 δ1 δD−2 δD−1
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Coboundary Matrices and Actions

Triangular Mesh with a Diagonal

N0 N1

N2

N3

F0 F1

E0 E1

E2E4 E3
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Example

Coboundary Matrices δ0, δ1

From the consistent boundary operators ∂1 ∈ R4×5, ∂2 ∈ R5×2:

δ0 = ∂
T
1 =

E0

E1

E2

E3

E4



N0 N1 N2 N3

−1 0 0 1
0 1 0 −1
0 −1 1 0
0 0 1 −1
1 0 −1 0

 ,

δ1 = ∂
T
2 = F 0

F 1

 E0 E1 E2 E3 E4

1 0 0 1 1
0 1 1 −1 0

 .

24



Example

Actions on Cochains

Let σ ∈ C0M and ρ ∈ C1M . Then

(δ0σ)(E3) = σ
(
∂1E3

)
= σ(N2 −N3) = σ(N2)− σ(N3),

(δ1ρ)(F0) = ρ
(
∂2F0

)
= ρ(E0 + E3 + E4) = ρ(E0) + ρ(E3) + ρ(E4),

(δ1ρ)(F1) = ρ
(
∂2F1

)
= ρ(E1 + E2 − E3) = ρ(E1) + ρ(E2)− ρ(E3).

Historical Note: Georges de Rham

Georges de Rham (1903–1990) was a Swiss mathematician who
pioneered the connection between differential forms and
topology. His work led to the de Rham theorem, establishing the
equivalence between differential and topological cohomology -
the foundation of the modern de Rham map. see next
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de Rham Map

Definition

Let X be a smooth manifold with dimX = D, and let M be a CM

embedded by ϕ : M ↪→ P(X). For p ∈ {0, . . . , D}, define

Rp : Ω
p(X) → CpM, (Rpω)(c) :=

∫
ϕ(c)

ω, c ∈ Mp,

and extend by linearity to chains.

Example on the Interval X = [0, 2]

Nodes: N0, N1, N2 at x = 0, 1, 2. Edges: E0 = [0, 1], E1 = [1, 2]
with the natural left-to-right orientation.

N0 (0) N1 (1) N2 (2)

E0 E1
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Example

Concrete Evaluation

For p = 0 (functions f ∈ Ω0(X)):

(R0f)(Ni) =

∫
{xi}

f = f(xi), x0 = 0, x1 = 1, x2 = 2.

For p = 1 (ω = g(x) dx ∈ Ω1(X)):

(R1ω)(E0) =

∫ 1

0
g(x) dx, (R1ω)(E1) =

∫ 2

1
g(x) dx.

Thus R0 : Ω
0 → C0M samples at nodes; R1 : Ω

1 → C1M
integrates along oriented edges.
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Discrete Stokes–Cartan

Theorem (de Rham–Coboundary Commutativity)

For p ∈ {0, . . . , D − 1},
Rp+1 ◦ dp = δp ◦Rp.

Ωp(X) Ωp+1(X)

CpM Cp+1M

dp

Rp

δp

Rp+1

Specialization (e.g. D = 3)

For p = 0, 1, 2 the same commutative diagram holds with Ωp(R3)
and CpM (vertices, edges, faces) embedded in X = R3 by ϕ.
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Discrete and Smooth Trace

Definition (Discrete Trace)

Let L ⊆ M be a submesh. The trace

trp : C
pM −→ CpL, (trp σ)(c) = σ(c), c ∈ Lp,

is restriction of cochains to L.

Compatibility (Smooth vs Discrete Trace)

Let trsmp : Ωp(X) → Ωp(∂X) be the smooth trace (pullback to the

boundary). Then the de Rham maps commute with trace:

trp ◦Rp = RL
p ◦ trsmp ,

where RL
p : Ωp(∂X) → CpL is the de Rham map on the submesh

L.
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Commutative Diagram

Ωp(X) Ωp(∂X)

CpM CpL

trsmp

Rp

trp

RL
p
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Summary of Combinatorial Foundations

Discrete Geometry Essentials

• p–cells: Basic building blocks — single points (p=0) or open
p–balls (p>0).

• Regular cell complex: A collection of cells closed under

intersection and face closure, i.e. cl(a) =
⋃

b⊆a b.

• Combinatorial mesh: A partially ordered set (M,4) that
can be embedded into a smooth manifold X such that its

image forms a regular cell complex.

• Polytopes: Meshes with one top D–cell — segments (1D),
polygons (2D), cubes/tetrahedra (3D), etc.

• Diamond property: For a∈Mp+2, c∈Mp with c≺a, there
exist exactly two (p+1)–cells b′ and b′′ such that c≺b′, b′′≺a.
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Summary of Chain Complex Structure

Orientation and Boundary Operators

• Relative orientation: ε(a, b) ∈ {±1} defines the signed

incidence between adjacent cells satisfying

ε(a, b′)ε(b′, c) = −ε(a, b′′)ε(b′′, c).

• Chains: CpM = FreeR(Mp) - linear combinations of oriented

p–cells.

• Boundary operator:

∂p(a) =
∑
b≺a

ε(a, b) b, ∂p+1 ◦ ∂p+2 = 0.

• Example (triangular cell with diagonal): Explicit ∂1, ∂2
matrices verified ∂1∂2 = 0.
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Summary of Discrete Differential

Dual Spaces and Operators

• Cochains: CpM = (CpM)∗ - linear duals of p–chains.

• Coboundary operator: δp = ∂T
p+1 defines the discrete

analogue of the exterior derivative, satisfying δp+1 ◦ δp = 0.

• Example: Explicit matrices δ0, δ1 act on cochains:

(δ0σ)(Ei) = σ(∂1Ei), (δ1ρ)(Fj) = ρ(∂2Fj).

• de Rham map: Rp : Ω
p(X)→CpM with

Rp+1 ◦ d = δp ◦Rp,

establishing equivalence between smooth and discrete

calculus.

• Trace consistency: trdiscp ◦RM
p = RL

p ◦ trsmooth
p .
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Thanks
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