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Integration on Manifolds

The University of Manchester

Let (M, g) be a compact oriented D—dimensional Riemannian
manifold.

1. The measure of M (length, area, or volume for D = 1,2,3) is

IU,(M) :/ VO|(M7g) > 0.
M

2. The Riemann integral of a smooth function f € F(M) is

= / fVOl(M’g).
M



Integration on Manifolds

The University of Manchester

Definition

For D =1, M = [a, b], this reduces to the classical integral

b
10 = [ f@)do
3 The inner product of two p—forms w,n € QP(M) with
pe{0,1,...,D},is

{w, myp =I(gp(w,n)).
= / g;(w, n) VOl (pz,)-
M



Example: Area on the Sphere S?

The University of Manchester

LetD =2, M = S? = {(z,y,2) € R | 2% + y? + 22 = r?} with the
induced orientation and metric from R3. In spherical coordinates:

x = rsinfcos ¢, y = rsinf@sin ¢, z =1rcosb,
g € (0,m), ¢ € (0,2m).

The induced metric is g = 72(d#? + sin® # d$?), and the volume
form is

vol(ps ) = r? sin 6 do A do.
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Computation of Area of a Spherical Quadrilateral

For 6 € [61,62] and ¢ € [¢1, ¢2),

A= r2sinf dh A de
[01,02] x [¢1,02]

¢2 02
—r// sin @ df do
1 J61
72(¢g — ¢1)(cOS B — COS 03).

This agrees with the Frobenius theorem, ensuring the integration
of a 2—form depends only on the orientation of M.



MRS \/isualization
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Codifferential Operator Manifolds
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Definition

Let (M, g) be a compact oriented D—dimensional Riemannian
manifold, and p € {1,2,..., D}. Denote by

opP

Q (M) ={weQP(M)|trons w = 0} the space of p—forms
vanishing on the boundary.

The codifferential

oP op—1

&5 (M) —Q (M)

op—1
is the adjoint of d,,_; restricted to Q@ (M):

op op—1
<d;w777>17—1 = <w7dp—177>17a Vw € (M)a n € (M)
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Expression via Hodge Star

Equivalent Expression

Foranyp e {1,...,D},

* _ Al
dD—p O *xp = (—1)p ‘kp+1 Odp,

or equivalently: dj, , = (=1)""" x, 1 odpox,*

—(—1)PH1+p(D=p) *p41 0dp 0 *p_p.

d
QP (M) —2— QPHL(M)
*p *p+1

QP=P(M) — QP=P=1(M)
(=1)Pdp,_,



Codifferential: General Identity

The University of Manchester

Setup and Symbols

(M, g): oriented D-dimensional Riemannian manifold.
QOP(M) : p-forms on M,

dy : QP (M) — QPYH(M).

*p 0 QP(M) — QP~P(M) (Hodge star),

*;1 = (=1)P(P-P) *D_p -

Inner product: g, (w,n)voly = w A x,n,

(w,mp = /M gp(w,m) volg.



Adjoint of d

The University of Manchester

Codifferential

Forp e {0,1,...,D — 1}, the adjoint
(—1)p+1+p(D_p) *pt1 0 dp O *kp_p,

dp_,: QPP(M) — QP7P71(M).

i3 —
&b, =

f € QM) = F(M) (smooth scalar function).

w € QY(M) (one-form; via g corresponds to a vector field by w = Xb).
n € Q%(M) (two-form;in D =3, n = V"

encodes an oriented flux field).



Specialization to D = 3: Explicit d and d*

The University of Manchester

Exterior derivatives in D = 3

Adjoints from the general identity

Using dj,_, = (—1)PTHPP=P) 5,1y dpxp_, With D = 3:

fOI'p =9 dT = (—1) 2+1+2(1) *3 dg *1
= (—1)5 *3 d2 *1

= — %3 da *1,



Specialization to D = 3: Explicit d and d*

The University of Manchester

Adjoints from the general identity

d; : QY (M) — Q°(M) (“negative divergence” under the standard
identifications).
forp=1-: dy = (—1) 1@ s d) %

= (—1)4 *9 dl *9

= *2 dy *2
dy - Q*(M) — QY (M) (“curl” under the standard identifications).
forp=0: d5 = (=1)2T110 5y dyxs

= — %1 do*3,

d; : Q3(M) — Q*(M) (co-gradient of a density 3-form).



MANCHESTER . . .
Interpretation in R? and Schematic
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Vector—calculus dictionary (with this sign convention)
do ~» gradient (Vf),
di ~ curl (V x A),
dy ~- divergence (V- F),
d] = — *3dox; ~ — div(4),
d5 = xodixa ~ V x F,

grad curl div
QO do N Ql dl N Q2 d2 y Q3
dT = — %3 d2*1 d; = *gdl*g d:r';’ = — %1 d0*3

— div curl co-grad



Domains/Codomains
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Fed % gr el
we M g e 0?,
ne 0?2 dne s,
aeﬂlﬁdTQEQO,
Ben? & zpeql,

d*
ye 2 diy e Q2



Setup and Field Quantities
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Geometric—Physical Setting

Let D € N. Let (M, g) be a compact, oriented D—dimensional
Riemannian manifold with nonempty boundary dM (spatial
domain). Let ¢y € R and I = [ty, c0) (time interval). We study the
transport of an extensive quantity (mass, charge, energy, ...) in
M over 1.

Differential-Form Fields (time—dependent)

Amount (density D—form): Q € C>(1,QP M) so that [;, Q(t) is
the amountin V C M.

Flow rate (flux (D—1)-form): ¢ € C°(I,QP~*M), so that [, q(t)
is net flow through SP~1.

Internal production (source D—form): f € C>(I,QP M), so that
[y, f(t) is total production in V.




Flux Across an Internal Interface

The University of Manchester

M

qs = QV+—>V, - QV,—>V+

Time—Integrated Net Flux Through S

For [t1,to] C I,

Net flux on [t1, to] : /t2(/sq(t)) dt.



Continuity Law: Integral and Differential

ThT:ﬂvm sity of Manchester

Integral Balance on Any Subregion V' C M

For [tl,tg] c I,
to to
[at-[aw= ([ ro)a- [([ aw)a.
1% 1% N t1 1% t1 oV
amount change in V/ internal production total outflov;rthrough ov

Using Stokes—Cartan on 9V,

/a alt) = /V dp1q(t).



Continuity Law

The University of Manchester

Integral Balance on Any Subregion V' C M

Assuming smoothness, differentiate under the integral in time:

==(t) = /V(f(t) —dp_1q(t)).

Localization (“Dropping the Integrals”)

Because the equality holds for all subregions VV and for all ¢, the
integrands must agree pointwise:

0Q
E—f—dp_lq on M x I.

This is the differential-form version of the continuity law.




Boundary Sign Convention and Stokes
“on Moving Slices

Orientation and Signs

With the outward orientation on oV,
/ q:/ dp-1q = outflow (through 0V) = /dD_lq.
ov 1% \%

Thus,

3@_
B = f—dp-1q

encodes “time rate of change = production — outflow”.



Visualization

The University of Manchester

outward normal, OV

20



MANCHESTER .
Correspondence with Vector Calculus

A Common |dentification

In D = 3, write @ = pdV' (amount density p times 3—volume
form), and represent a vector flux field F' via the flux 2—form
q = vzvol. Then

0Q [ ~
E_f dog +—= (%dv_fdv (V-F)dV
ap = ~
= E—f—V-F.
_—
_——

~—

flux field F, ¢ = ¢zvol 21



Neumann Boundary and Prescribed Flux

The University of Manchester

Boundary Portion and Data

LetI'y € OM be a (D—1)—dimensional smooth submanifold
(Neumann boundary). A prescribed flux (i.e. given as boundary
input) is a (D—1)—form

gy € C(1,QP~'Ty) with physical unit X 7],

interpreted so that [ gn(t) equals the net amount per unit time
crossing S C I'y at time t.

Neumann Boundary Condition (NBC)
The total flux g € C>(1, QP~1 M) satisfies

trqu = gN onIT'y x I.

22



Neumann Boundary and Prescribed Flux

The University of Manchester

Boundary Portion and Data

oM

I'n
utward flux ¢

23



Potential, Diffusion, and Advection

Potential and Total Flux Split

Let u € C*>(1,Q°M) be the potential (units [Y]), e.g. temperature,
concentration, pressure, or electric potential. Split the total flux as

q = qp + qa,

where ¢p is the diffusive part and ¢4 is the advective part.

Diffusive (constitutive) law — isotropic & anisotropic

With du € Q' M and Hodge star « : Q! - QP~1,

(isotropic) qp = —k % (du), k€ C®(M), k> 0;
(anisotropic) g¢p = — x(F(duw)), #:Q'M —Q'M
(SPD (1, 1)—tensor).

24



Potential, Diffusion, and Advection

The University of Manchester

Diffusive (constitutive) law — isotropic & anisotropic

Equivalently, define x : QP~IAM — QP~1M by the identity

’*D,loﬁzmo*l‘ = qp = —k *x (du).

M

qls ~ Uy —u-

25



Advection
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Advective Flux via Volume Flux Form

Let v be a velocity vector field; its volume flux form is
v = vol € QP7IM  (units [LPT7Y)).

If @ € QP M is the amount D—form, then

ga = (*Q)v (scalar density x @ x volume flux form v).

26



Capacity

The University of Manchester

Volumetric Capacity

Relate amount and potential by a capacity coefficient:

7: QM - Q°M, Q= x(7u).

Equivalently, 37 : QPM — QPM with| moxg = xgo7 |,

=  Q=m(*u).

9Q _ _(,0u) _  (~0u
ot~ "\"ar) ")

Hence

27



Boundary Partition and Data

The University of Manchester

Dirichlet vs. Neumann

LetI'p, 'y € OM be relatively open, disjoint, with
IpUTy =8M, dim(pNnTy)<D-2.
Dirichlet boundary condition (DBC):
trr,u = up, up € C*°(I1,9°Tp).
Neumann boundary condition (NBC):

trry ¢ = g, gy € C®(I1, QP y).

28



Visualization
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Governing Equations (Summary)
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Bulk Law (Continuity)

0Q

= —d in M x 1.
B =f D-1¢ X

Constitutive Relations

Capacity: Q = *(7Tu) = w(x
Diffusion: qp = ( ) — K % (du), *p_10K=KO*].
v =

Advection: = (xQ)w, wvol € QP~1 M.

u), TOXp = *0OT.

30



Governing Equations (Summary)

The University of Manchester

Boundary Conditions and Unknowns

Unknowns: v € C*®(I,Q°M), Qe C>®(I,QPM),
qe C®(I,QP1M).

DirichletonI'p :  trp, u = up.

NeumannonT'y: trr, ¢ =gn.

Total flux: ¢ =qp + qa.

31



Primal Strong Model

The University of Manchester

Continuity and Constitutive Content (recall)

Continuity: %Cf = f — dp-gq,

Amount—potential link (capacity): Q = A7u)
(equivalently 7u = xpQ),
Flux split: q = qp +qa,

Diffusion (anisotropic): gp = — * (% du)
(isotropic: gp = — K * du),

Advection: g4 = (xQ)v, v = izvol € QP

32



Primal Strong Model

The University of Manchester

Substitute (), ¢ in terms of u

2(*(%71)) :f—dD_1<— *(Kdu) + (*Q)U)

ot
=f + dp-1*(Rdu) — dp_1((*Q)v)
=f + dp-1*(kdu) — dD71<(**(7AT/U))U)a

where in the last line we used @ = x(7u).

33



et Primal Strong Model

The University of Manchester

Primal strong equation for u

A
ot

(*(%u)) — dp_1*(Rdu) + dD_1<(**(%u))v) = i

In isotropic diffusion (k = « id), the second term is dp_1(k * du).

34



Equivalent Form Using 7u = xpQ

The University of Manchester

Express everything through @ and then back to «

Tu=+pQ <= *(Tu)=**pQ = opQ,

where op = +1 depends on the metric signature and D (in
Euclidean D-RM, op = +1). Hence

0 ~ 0
&(*(m‘)) —op acf‘
Using the continuity equation %2 = f — dp_1q and
q = —* (Rdu) + (*Q)v, we get
= f = dpa( — *(Fdu) + (+Q)v)
— f I dD_1 * (Rdu) — dD_l((*Q)’U).

Lot

Replacing @ by x(7u) recovers the primal equation in « from the
previous slide.

35



Manufactured Steady Problem
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Steady assumptions and model

Let % =0, hence %—? =0, and v = 0. The continuity law reduces
to

0=/f-dp-1q = [ = dp-yq.
With pure diffusion ¢ = qp = — k * du (isotropic, constant x > 0),

f = dD—l(_ m*du) = —/idD_l(*du).

36



Manufactured Steady Problem

The University of Manchester

Choose M = [0,1]* C R?, standard Euclidean metric

Let u(x,y,2) = 22 + y* + 22 and x = 2 (constant).
du =2xdx + 2y dy + 2z dz,

*dr =dy Ndz, dy=dzANdzx, *dz=dx A dy,
*du =2xdy Ndz + 2ydz Ndx + 2zdx A dy,

q = —kK *du:72(2xdy/\dz+2ydz/\d:v+2,zda:/\dy>

=—dxdy/Ndz — dydz ANdx — 4zdz A dy.
Finally,
f=dqg = —kd(xdu) = —2(Au) dr NdyANdz=—2-6de Ndy Ndz
= —12dx AN dy N dz.
Thus the manufactured source is the constant 3—form
f=—-12dx ANdy Ndzon M.

37



Flux Sketch (steady diffusion in a cube)

rsity of Manchester

N g =tr +du
/

\

M =[0,1]3




IR Summary

The University of Manchester

Main Concepts

o u(M)= [, vol(y 4) gives measure (length/area/volume) of
(M, g).
o (w,n)p = [y 95w, mVvol(rs 4 defines inner product on QP (M).
e Codifferential d* is the adjoint of d:
<d;w7 77>p*1 = <w7 dp*1n>p'
¢ Relationship with Hodge star:

* _ +1
dD—p O*p = (_1)17 *p+1 Odp.

e For D = 3: (dy,d;,ds) correspond to (V,Vx, V) and (dj, d5)
to their adjoints.

39



IR Summary

The University of Manchester

Main Concepts

e Neumann data prescribes the flux (D—1)—form on Iy,
Dirichlet data prescribes the potential on T'p.

e Diffusion: ¢gp = — x (kdu) (or —x = du); Advection:
ga = (xQ) v with v = (zvol.
e Capacity links amount and potential: @ = *(7u).

oQ

e Continuity in forms: i f —dp_1q, closed by the
constitutive laws and boundary conditions.

40



IR Summary

The University of Manchester

Main Concepts

e Amount Q(t) € QP M, flux ¢(t) € QP~1 M, production
f(t) € QP M model transport on (M, g).

e Integral balance on any V' C M and Stokes—Cartan yield the
local continuity law

0Q -
a = f—dp-1q.

e In D =3, with Q@ = pdV and q = vol, this becomes

p - ~
5 =/-VF

41



IR Summary

The University of Manchester

Main Concepts

e Primal strong model (exterior—calculus form):

0, - ~ -
a(* (Tu)) — dp—1 * (Rdu) + dp_1((* * (Tu))v) = f.

e Steady, no advection: f = dq = —k d(xdu); in R? this is
f=—rAuvol.

e Manufactured 3D example with u = 22 + 2 + 22, k = 2:
q=—4dxdy Ndz —4dydz ANdx — 4z dx A dy,
f=—-12dx Ndy A dz.

42



Global Picture

In

- (P ).

dg d}
*

1ol )= 1 QD)
I
I

) e

I

I

ol
i

G

*D

Codifferential:
d*D—p = (—1)Pt+1+p(D—p) *pt1 Odp 0
*D—p

Inner product: g;(w, n)vol = w A xpn
Hodge involution:

= (—1)P(D—p)

*D—p O *p idop
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