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Coordinate Patch in Polar Form

The University of Manchester

Example - Setting

Let U = (3,1] x (=%, 7) and define

f:U—=R? f(r,¢) = (rcos ¢, rsing).
Then the image
V=Imf={(rcose, rsing)|re(31], ¢ (-% %)}
is an annular sector in R2.

V=Imf




Exterior Derivative in R?
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For a smooth manifold M = R3, the exterior derivative (ED)
dy : QPM — QPN
satisfies d, 1 o d, = 0 and the graded Leibniz rule.

Concrete Computations
Let f: R3 = R.

G G O
dof = axda:—i- aydy—i— 8zdz'

Fora 1-form w = f.dx + f,dy + f.dz,



RIS xarole
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Concrete Computations

diw = d(fz) A dzx + d(f,) Ady + d(f.) A dz
= (foy — fyz) dy N dz + (for — fou) dz Adz + (fyz — fuy) dz A dy.

Thus dyw corresponds to curl( f., fy, f-)-

For a 2-form
Ifn = fody ANdz+ fydz Ndx + f,dx A dy, then

don = (fzz + fyy + f2,2) dx A dy A dz,

which represents the divergence V- (fz, fy, f-)-



MRS Differential Operators as ED
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dof =V f = (fu; fy),
di(fedx + fydy) = (fya — foy)dx A dy = scalar curl,
diodp=0 = curl(Vf)=0.

F(R2) = Q0

ldo =
X(R?) =0t
ddi = curl

02 (R?)



Ml i Differential Operators as ED

The University of Manchester

dof =V,

di(fzdz + fydy + fodz) = curl(fz, fy, f2),
do(fody Ndz+...) = div(fe, fy, f2),
dyody =0 = V-(VxA)=0.

F(R?) = QO
Jdo=V
X(R3) = !
Jdi = curl
0%(R?)
1do = div
Q3(R?)



Pullback of Differential Forms
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Let M, N be smooth manifolds and f € C>°(M, N). For a 1-form
w € QLN with local expression

w=hydy; + -+ hy, dyy, hz‘E./."(N),
the pullback f*w € Q' M is defined by
ffo=(hiof)d(yiof)+-- + (hnof)d(yno f).

It extends naturally to exterior powers: f*(w An) = ffw A f*n.



Pullback of Differential Forms

The University of Manchester

Let M = N =R?, f(r,¢) = (rcos ¢,rsin ¢), and
w = —ydx + xdy. Then

ffw = — (rsin¢)d(rcos ¢) + (r cos ¢) d(r sin ¢)
— (rsin¢)(cos ¢ dr — rsin ¢ de)

+ (r cos ¢)(sin ¢ dr + r cos ¢ do)
2d

¢



Compatibility of Pullback and ED
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Theorem (Compatibility of Pullback and Exterior Derivative)

Let M, N be smooth manifolds and f € C°°(M, N) a smooth
map. For each degree p € N, the pullback operator

f; : QP(N) — QP (M)

commutes with the exterior derivative, i.e.
M * * N

dy o fy = fpr10dy.

In other words, taking the pullback of a form and then
differentiating gives the same result as differentiating first and

then taking the pullback:
ffdw) =d(f*w), VYVw e QP(N).

This shows that the exterior derivative is a natural operator with
respect to smooth maps between manifolds.



MANCHIIGIER Exa m p I e
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Let M = N =R?, f(r,¢) = (rcos¢,rsing), w = dr A dy:

ffdx = cos ¢pdr — rsin ¢ do,
frdy =singdr + rcos ¢ do,
f(dz ANdy) = (f*dz) A (f*dy) = rdr Ade.



Trace of Differential Forms on Submani-
Tth(vB/Ivacsﬂ\/\amhcstm

Let M be a smooth manifold and N C M a submanifold with

inclusion map
iNn: N = M, (y(x)=u=z.

The trace (restriction) of forms is the pullback
try =y : Q°M — Q°N.

If N C 0M, this represents the restriction of forms to the
boundary.



Example
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Example

Let M =R?, N = S!' C M, and w = z dy — y dz. The inclusion
11 @ ST — R? gives

trg1 w =(zdy — ydz)| g
=(rcos ¢)(r cos ¢ dp) — (rsin ¢)(—rsin ¢ do) = r’do,

and forr =1, trg1 w = do.

N=S'cM=R?



Orientation of Smooth Manifolds
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Definition

Let M be a smooth manifold of dimension D. Since the space of
top—degree forms QP M is locally 1-dimensional, every element
w € QP M can be written locally as

w= fdxy Ndxa N--- Ndzp, feFM).

If f(x) # 0 forall z € M, then w is said to be a nonvanishing
D—form, and M is called orientable. A choice of such an w (and
identifying all positive scalar multiples of w as equivalent) defines
an orientation of M.

If M is connected and orientable, it admits exactly two possible
orientations, represented by w and —w. If M is disconnected,
each connected component may be oriented independently.




Orientation of Smooth Manifolds
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Intuitively, an orientation distinguishes between the two possible
“directions of measurement” on M: one associated with w (posi-
tive orientation) and the other with —w (negative orientation).

RP is orientable with orientation

w=dx1 Ndxa A --- Ndrp, oritsopposite —dxi A---Adxp.

w==4dx1 N dxo gives positive orientation



Outward-Pointing Vector Fields
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Definition

Let M C RP be a D—dimensional manifold with boundary. A
vector field X € X(M) is called outward-pointing on 9/ if near
every boundary point it locally points outside M.

Examples

e M=B(0,0) CR*, X=xf+yl;

e M=B(0,0,0) R X=zZ+yZ+zL.

*®



The Induced Orientation on Boundaries
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Theorem (Induced Orientation)

Let M be an orientable D—manifold with boundary S = 0M and
orientation form w € QP M. If X € X(M) is outward-pointing,

then
wg = tl’aM(LXw) € QD_l(S)

defines an orientation form on .S, called the induced orientation.
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LN Fxample
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Example 1: Half-Plane
Let M =[0,00) xR, S = {0} xR,

X:—i, w =dx A dy.
ox

Then
tx(dx Ndy) = t_p, (dx AN dy) = — 19, (dz Ndy) = —dy.

Thus wg = —dy: the boundary inherits the leftward orientation.
OM ={0} kR
)




MANCHESTER . . .
Induced Orientation in 2D and 3D Balls

Example 2: Disk in R?

M = B1(0,0),0M = S*, X =20, +y8,,  wn =dzxAdy.

Then txwpr = 29,440, (dx A dy) = xdy — y dx.
In polar coordinates = r cos ¢, y = rsin ¢, SO

rdy —yde =r’dp = tron (Lxwyr) = do.

Hence, S! inherits counterclockwise orientation.



3D Ball: Induced Orientation on the Sphere
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Example 3: Ball in R?

M = B4(0,0,0), oM = S,
6 = e AF Ul = ek wy =dx Ady Adz.

Then
txwy =xdy ANdz +ydz ANdx + zdz A dy.

In spherical coordinates
x =rsinfcos ¢, y=rsindsin¢g, z =rcosd, we have

troz (xwar) = 2 sin0 dl A de.

This 2—form defines the standard orientation of S2.
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g Visualization
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wg =sin0do A do

DA

20



Spherical Coordinates
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Spherical chart on S? (radius 1)

Standard spherical coordinates
x =sinfcos¢, y=sinfsing, z=-cosh, bec (0,7), ¢ < (0,2m)
yield the induced orientation 2—form

wg2 = SN dO A do.

Here df A d¢ is ordered so that (0, 04) agrees with the outward
normal orientation. sin ¢ is the Jacobian density (area scale
factor) of the chart; it vanishes only at the poles 6 = 0, =, where
this chart is singular (coordinate singularity, not a geometric one).

21



Ml i \isualization
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wgz = sinBdo A do; poleg%%hchart singularities

22



Curvature Intuition on 5?: Meridians vs
"Parallels

Geodesics and geodesic curvature (unit sphere)

e Meridians (¢ = const) and equator (¢ = 7/2) are great
circles = geodesics with geodesic curvature x, = 0.

e Parallels (¢ = const # 7/2) are not geodesics; their
geodesic curvature is x4 = | cos §| (nonzero away from the
equator).

e The area element (orientation form) is wg2 = sin 6 df A d:
bands near the equator (0 ~ 7/2) have greater area density;
near the poles (f — 0, 7) the density vanishes.

23



MRS \/isualization
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jdian (geodesic)
R = 0y, kg = | COS O

tor (geodesic)
x sind

The 0, ¢ chart encodes orientation and area via sin 6, is singular
at the poles, and separates geodesic directions (great circles)
from curved parallels (nonzero ).

24



Mt Compact Manifolds and Integration
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A manifold M C R? is compact if it is closed and bounded, i.e. it
lies entirely inside some finite ball Br(0).

Examples

e Closed D-bricks and their boundaries,
e Closed D-balls B;(0) and spheres SP~1.

25



Integration
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Smooth Oriented D—Manifolds

For compact, oriented M, integration is a linear map

/ OPM R
M
satisfying:

1. Additivity: If M = M; U M, with same orientation,

/w:/ terw—l—/ tras, w
M My Mo

2. Change of Variables: If ¢ : M — N is an
orientation—preserving diffeomorphism,

[y

26



Integration
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Smooth Oriented D—Manifolds

3 Stokes—Cartan Theorem:

/dwz/ trons w.
M oM

4 Zero-Dimensional Case: If M = {z} with orientation

€ = =1, f=¢€f(x).
{=}

27



Example 1: (D = 1)
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Statement: Newton—Leibniz Theorem

Let M = [a,b] C R, with boundary OM = {a, b} oriented as a — b.
For f € C>(M),
w=df = f(z)dz.

Then, by Stokes—Cartan:

/[a,b] af = /8 =10~ 1@,

Orientation
—_—

28



Example 2: (D = 2, Curve in R?)
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Statement: Gradient Theorem

Let v : [a,b] — R? be a smooth oriented 1-manifold with boundary
9y = {v(a),y(b)}, and f € C=(R?). The 1-form

& v Py

w=df = 3

Then
/ df = / tro, £ = F(2()) — F(2(a)).
A Oy

Thus, the gradient theorem is the 2—dimensional instance of
Stokes—Cartan.

29



Visualization
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)

A

N

JLdf = [y trf

/ o

30
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The University of Manchester Example 3 (D - 2)

Statement: Green’s Theorem

Let M c R? be a compact oriented 2—manifold with boundary M
(positively oriented). For a 1-form w = P dx + Q dy,

<8Q — 8P> dx A dy.

dw = or Oy

Then by Stokes—Cartan,

/dw:/ troar w.
M oM

This is Green’s theorem in exterior—form form: the flux of dw
across M equals the trace of w on M.

31



Example 4. D =3
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Statement (Stokes—Cartan for a 1-manifold in R?)

Let v : [a,b] — R3 be a smooth oriented curve (a compact
1-manifold M = ~([a, b]) with OM = {~(a),~(b)} and orientation
from a to b). For f € F(R3) = C*(R3), the 1-form

of of of .

Af = 5g 4o+ 5, du+ 5 dz

Then, by Stokes—Cartan on the 1-manifold M,
[dt= [ t0o,1 = 60D - flo(a)
ol Oy

(i.e. the line integral of the exact form df along the space curve
equals the trace of f on the boundary points).

32



Visualization
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z

A

Y

rientation

S~

df = f(y(b)) —

f(y(a))
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The University of Manchester Example 5 (D - 3)

Statement: Kelvin—Stokes Theorem

Let M C R? be a smooth oriented 2—manifold with boundary oM.
Fora 1-form w = Adx + Bdy + C dz,

oC 0B A  oC OB 0A
dw = <8y — 8z> dyndz+ (8z — &r) dzNdz+ (890 - 8;1/) dzNdy.

Then by Stokes—Cartan:

/dw:/ traMw.
M oM

This is the Kelvin—Stokes theorem in exterior form notation.
n

34



B =xaple ©: (0 — 3
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Statement: Gauss Divergence Theorem

Let M c R? be a compact oriented 3—manifold with boundary
OM. For a 2—form

w=PdyNdz+ Qdz Ndx+ Rdzx A dy,

we have
dw = (0, P + 0yQ + 0. R) dx N dy N dz.

Then, by Stokes—Cartan:

/dw:/ tron w.
M oM

This is the Gauss (Divergence) theorem in the language of
differential forms.

35



Ml i \isualization
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outward orientation

K

Japdw = o5 tronr w

36



Summary: Stokes—Cartan in all Dim.
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Unified Framework

For any compact oriented smooth D—manifold M with boundary

OM:
/ dw = / trons w.
M oM

All classical theorems follow as special cases:

Dim. Differential Form Result
1 df Newton—-Leibniz theorem
2 df on vy Gradient theorem
2 d(Pdx + Qdy) Green’s theorem
3 d(Adx + Bdy+ Cdz) Kelvin—Stokes theorem
3 d(Pdy Ndz+ Qdz Adx + Rdx A dy) | Gauss divergence theorem

37



Part I: Lecture Summary
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The exterior derivative d, : QP M — QP M generalizes grad,
curl, and divergence.

In R?: dy = grad, d; = scalar curl; in R?: dy = grad, d; = curl,
do = div.

Pullback f* transfers forms from N to M compatibly:

do f* = f*od.

Trace try = ¢}y restricts forms to submanifolds or
boundaries.

These constructions make differential forms
coordinate-independent tools for calculus on manifolds.

38



Part Il: Lecture Summary
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Orientation is given by a nonvanishing top—degree form
weNPM.

Outward vector fields define induced orientation on 90/ via
ws = traM(LXw).

Integration of differential forms generalizes classical calculus
results to manifolds.

Stokes—Cartan theorem unifies Newton—Leibniz, Green,
Kelvin—Stokes, and Gauss divergence theorems.

Compact oriented manifolds admit consistent integration
respecting additivity and diffeomorphism invariance.

39
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