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Euclidean Balls and Spheres

The University of Manchester

LetneN,r e RT, 7= (z1,...,7,) € R™.
n
Open ball: B.() = {7 = (y1,-.,ym) € R" | S (3 — 13)? < r2}.

Closed ball: B, (i) := {7 € R" | Z — )2 <r?}).

Sphere: S = {jeR"| Z r?}



Unit Examples at the Origin
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Casen =1:
By(0) = (-1,1), E(O) =[-1,1], $1(0)={-1,1}.

Case n = 2: (open unit disk, closed unit disk, unit circle)
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Open disk B, (0) Closed disk Unit cirgle S, (0)

boundary not included boundary includ e boundary itself only
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Unit Examples at the Origin
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Case n = 3:
(open unit ball, closed unit ball, unit sphere)

Open ball B, (0) Closed ball B;(0)  Unit sphere S, (0)

boundary not included boundary included boundary itself only



Open/Closed n-Bricks
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Parallelotopes

Letne Nanda; < b;fori=1,...,n.

Open n—brick: (a1,b1) x (ag,ba) X -+ X (an,by),
Closed n—brick: [a, b1] X [ag,ba] X -+ X [an, by],
and Boundary:

8([0,1,[)1] X - an, U al,bl 00 X [akfl,bkfl] X {ak,bk}
[ak+1;bk+1] X oo X [, by])
:<{a1,b1} % [az, bo] X - -+ X [an,bn])
U ([al,bl] x {az, bo} X - % [an,bn])

\
U.--u ([al,bl] X [az, ba] X -+ X {an,bn}



Open and Closed 2D Bricks
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Case n = 2: unit brick (0,1)? and [0, 1]?

(Squares/Rectangles)

e Open square (0, 1)2: interior points only (boundary
excluded).

e Closed square [0, 1]2: includes all boundary edges.
e Boundary 9[0, 1]?: the four edges forming the perimeter.

Open brick (0, 1)? Closed brick [0,1]2 Boundary 9]0, 1)?

boundary not included boundary included four edges only
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Open and Closed 3D Bricks
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Case n = 3: unit brick (0,1)* and [0, 1]

e Open cube (0, 1)3: interior points only (no faces).
e Closed cube [0, 1]3: includes interior and all 6 faces.
e Boundary 90, 1]3: the 6 faces listed below:

{0,1}x0,1]x[0,1], [0,1]x{0,1}x[0,1], [0,1]x[0,1]x{0,1}.
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Open cube (0, 1)? Closed cube [0, 1]? Boundary 9[0,1]3

faces not included faces included six faces only



Interior and Boundary Points
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Definition

Letn € N, and let M C R™.

1. Interior Point

A point z € M is interior to M if there exists an open ball
(equivalently, an open brick) U such that z € U C M.

2. Boundary Point
A point z € R" is a boundary point of M if for every open
neighborhood U containing z, the following two conditions hold:

UNM+#@ and UN(R"\ M) +#o.



Interior and Boundary Points
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Examples in R2.

M = B1(0,0) = {(x,y) | #* + y* < 1} : every point is interior.
M = B;(0,0) : interior points are those with % + 3 < 1,
boundary points are those on the unit circle 2 + 4% = 1.

P boundary S; (0

~ L -

Open disk B;(0) interior of B;(0) Boundary |S;(0) only

boundary not included boundary included no interior points




Open and Closed Sets in R”
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Definitions. Let M/ C R™.

M is open < every x € M is interior.
M is closed <= R"\ M is open.

Basic examples and reasons.

e B,.(z) is open: for each y € B, (x) take a smaller ball
Be(y) € By ().

e B.(x) is closed: its complement is open (distance to z is
continuous; {d > r} is open).

e Open n-bricks are open (product of open intervals); closed
n-bricks are closed (finite intersection of closed half-spaces).

e R™ and @ are both open and closed: complements are &
and R", respectively, which are open.



Interior and Closure of a Set
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For M C R™:

int(M) :=the set of interior points of M (largest open subset of M),
M :=the smallest closed set containing M
(intersection of all closed supersets).

M =1[0,1) CR.

int(M) = (0,1), M =[0,1].



Relative (Subspace) Topology
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Let M be a subset of R™ and U be a subset of M. We define the
relative topology on M by setting its open and closed sets as
follows:

Uisopenin M <= 3Janopenset X CR"
suchthatU = M N X.

U is closed in M <= Jaclosedset X CR"
suchthatU = M n X.



Relative (Subspace) Topology
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Example(n_2) M =5"={(z,y) | 2* +y* = 1}.

U= X openin M

UgH

/ H y
MLl g]lX closed in M

Similarly: If X is closed (e.g. intersection with a closed half-plane),
thenU = M N X is closed in M.

Note. Whether M itself is open/closed in R" is independent from
being open/closed in M; any M is both open and closed in the
relative topology on M.



Continuous vs. Smooth

Smoothness on Open/Closed Domains

Continuous means: small changes in input yield small changes
in output (no derivatives required). Smooth (infinitely
differentiable) means: all partial derivatives of all orders exist and
are continuous.

Definition (Smooth map on an open domain)

Letm,n € N, U C R™ be open, V C R", and
f=01,.-.,fn): U—V.Wesay fis smooth (write
f € C°°(U V)) if for every k € N, for all choices
i1,...,ip € {1,...,m} and each j € {1,...,n}, the mixed partial
ok f;
()

exists for every x € U.



Smoothness on a closed domain
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If U' C R™ is not open (e.g. closed), we say [ : U — V is smooth
ifAthere e>gst an open sety C R™ with U C U and a smooth map
feC>U,V)suchthat fy= f.

U incl R f}




Examples
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e Elementary Functions: The following are smooth (C° on
their natural domains):

Polynomials (on all of R).

Trigonometric Functions: sin(x) and cos(x) (on all of R).
Exponential Function: exp(z) (on all of R).

Logarithm: In(z) (on its domain, (0, 00)).

Sums, Products, and Quotients (where the denominator is
non-zero).

Compositions: If f and g are smooth, then f o g is smooth.

e A Function That Fails C! at a Point:
Consider the function f(z) = |z|'/3.

e The Issue: This function is not C! at z = 0.
The derivative is f'(z) = |z|7%/3 - sgn(z).

e Conclusion: lim, .o |f'(z)| = lim,_ W = 00. The
derivative is not defined (it "blows up”) at = 0, meaning
f(x) is not differentiable at this point, and thus cannot be C*!
there.



MANCHESTER . . . .
8 Differential / Jacobian Matrix

Definition. Let m,n € N, U C R™open, f = (f1,...,fn) €
C>*(U,R") and z = (z1,...,zm) € U. The Jacobian (differential)

at z is the n x m matrix

i(z) - @)
Dxf: . :

Ofn Ofn

Loz o f)

It represents the best linear approximation to f at x.
Example (Polar coordinates). f : [0,1] x [0,27] — B;(0,0),

f(r,¢) = (rcos¢, rsing). Then
gi(ra ¢) = (cos ¢, sing), gi;(r, ®) = (—rsing, rcos ).

Hence

D¢ f = (Z?:j _TTCS(')';‘ ZZ) 7 det D, 4 f =1



Inverse Function Theorem (IFT)
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Letm € N, U C R™ open, and f € C(U,R™). Ifat 2y € U the
Jacobian D, f is invertible (i.e. det D, f # 0), then there exist
open neighborhoods zy € Uy C U and f(xg) € Vo € R™ such that

f onz Uo— Vo
is a diffeomorphism (bijective, smooth inverse).

Proof (complete outline with key steps).
e Reduction: By translation and linear change of variables
(compose with D, f~1) assume zo = 0, f(0) =0, Dof = I.
e Fixed-point map: For y near 0, define T (z) = = — (f(z) — y).
Then T},(0) = y and DT (0) = I — Df(0) = 0.



3 Proof

° Contract/on: Using continuity of D f at 0, choose a small ball
where ||Df(x) — I|| < 3, so T, is a contraction on that ball for
all y in a small ball. By Banach’s fixed-point theorem, 7}, has
a unique fixed point z, i.e. f(z) = y.

e Regularity: The fixed point depends smoothly on y (by
implicit function theorem/contractive mapping with
parameters), giving f~1 € C=(Vo, Up).



Example
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Polar-annulus example.

Let U = (3,1) x (0,27) and define

f(r,¢) = (rcos ¢, rsing).

Then Df is as before, detDf =r € (%, 1), so f is a local
diffeomorphism everywhere on U. Its image is the open annulus

V={(z,y) eR?| <2 +y* <1} \{(2,0): z > 0},

where the ray {(z,0) : z > 0} is removed to keep the angular
coordinate single-valued. On U we have a global diffeomorphism
f:U SV,

20



Immersions: Curves and Surfaces
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Definition (Immersion).

Letm,n e N,U CR™open, V CR", and f € C>°(U,V). We say
f is an immersion if for all z € U, the Jacobian D, f € M,,«m(R)
has rank m (its m columns are linearly independent).

Specific case.

e m = 1 (parametrized curve): f(t) = (fi(t),..., fu(t)). Then

f1()
Dif = : , f immersion < D, f # 0 for all t.
fu(®)

21



i [

The University of Manchester

e m = 2, n = 3 (parametrized surface):
f(z1,22) = (fi(21, 22), fa(w1, 2), f3(z1, 72)) With

1 )
Doponf = |22 22| — (2L 21,
(z1,32) Or1 Oz Ox1 Oxo
ofs  Ofs
Ox1 Oxo

sorankDf =2 & af and 8f are linearly independent in
R3. Equivalently, all 2 x 2 m|nors

gfz gfz gf3 gfs gh gﬁ

_ 1 2 _ 1 T2 1 T2

b1 = det( 8f3> by = det( 8f1> ,bg = det( Bf2>
8CE1 8902 8"81 8272 axl 83{?2

do not vanish simultaneously (equwalently (% X (%2 # 0).

22



Spherical Coordinates
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Immersion of S2

Parametrization. Let (¢, ) € (0,7) x (0,27) and define
f(0,¢) = (sinfcosp, sindsinyp, cosh).

Then
df/(08) = (cos b cos g, cosbsiny, —sind)T,
df /(0¢) = (—sinfsinp, sinfcos p, 0)T.

Rank condition. The 3 x 2 Jacobian [ 9f/(90) 0f/(d¢) | has
rank 2 whenever sinf # 0, i.e. for 6 € (0,7), hence f is an
immersion on that open strip.

Singularities (poles). At § = 0 (north pole) or § = 7 (south pole),
sind = 0 and thus 0f/(0¢) = 0, sorank D f < 1; these are
singular points for this chart.

23



Spherical Coordinates
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e Fixing o traces a meridian (e.g. the Greenwich meridian at
¢ =0).

e Fixing 0 traces a parallel (latitude circle); 6 = = /2 is the
equator.

Charts. The sphere needs at least two charts to avoid the pole
singularities; e.g. one chart missing the north pole and one
missing the south pole.

24



IR Summary
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e Defined open and closed balls, spheres, and n—bricks (open,
closed, boundary).

e Distinguished between interior, boundary, and exterior points
of subsets M C R".

e Defined open and closed sets, interiors, closures, and
complements.

e Introduced relative (subspace) topology: sets open or closed
in M via intersections with open/closed subsets of R".

e lllustrated with visual examples in R!, R?, and R? (segments,
disks, cubes, spheres).

25



IR Summary

University of Manche:

e Smooth maps on open sets have derivatives of all orders; on
non-open sets they are defined by smooth extension to an
open neighborhood.

e The Jacobian D, f captures the best linear approximation; in
polar coordinates det D f = r.

e Inverse Function Theorem: if det D, f # 0, then f is locally a
diffeomorphism; polar map on an annulus is a model
example.

e Immersion U — R™: full column rank Jacobian; curves
require nonzero velocity; surfaces require f,, f,, independent

(fu x fo #0).
e Spherical chart is immersive off the poles; poles are chart
singularities necessitating multiple charts to cover S2.

26
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