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Euclidean Balls and Spheres

Definition.

Let n ∈ N, r ∈ R+, ~x = (x1, . . . , xn) ∈ Rn.

Open ball: Br(~x) :=
{
~y = (y1, . . . , yn) ∈ Rn |

n∑
i=1

(xi − yi)
2 < r2

}
.

Closed ball: Br(~x) :=
{
~y ∈ Rn |

n∑
i=1

(xi − yi)
2 ≤ r2

}
.

Sphere: Sr(~x) :=
{
~y ∈ Rn |

n∑
i=1

(xi − yi)
2 = r2

}
.
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Unit Examples at the Origin

r = 1, ~x = ~0

Case n = 1:

B1(0) = (−1, 1), B1(0) = [−1, 1], S1(0) = {−1, 1}.

Case n = 2: (open unit disk, closed unit disk, unit circle)

Open disk B1(~0)
boundary not included

Closed disk B1(~0)
boundary included

Unit circle S1(~0)
boundary itself only
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Unit Examples at the Origin

Case n = 3:

(open unit ball, closed unit ball, unit sphere)

Open ball B1(~0)
boundary not included

Closed ball B1(~0)
boundary included

Unit sphere S1(~0)
boundary itself only
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Open/Closed n-Bricks

Parallelotopes

Let n ∈ N and ai < bi for i = 1, . . . , n.
Open n–brick: (a1, b1)× (a2, b2)× · · · × (an, bn),
Closed n–brick: [a1, b1]× [a2, b2]× · · · × [an, bn],
and Boundary:

∂
(
[a1, b1]× · · · × [an, bn]

)
=

n⋃
k=1

([a1, b1]× · · · × [ak−1, bk−1]× {ak, bk}

×[ak+1, bk+1]× · · · × [an, bn])

=
(
{a1, b1} × [a2, b2]× · · · × [an, bn]

)
∪
(
[a1, b1]× {a2, b2} × · · · × [an, bn]

)
∪ · · · ∪

(
[a1, b1]× [a2, b2]× · · · × {an, bn}

)
.

5



Open and Closed 2D Bricks

Case n = 2: unit brick (0, 1)2 and [0, 1]2

(Squares/Rectangles)

• Open square (0, 1)2: interior points only (boundary
excluded).

• Closed square [0, 1]2: includes all boundary edges.

• Boundary ∂[0, 1]2: the four edges forming the perimeter.

Open brick (0, 1)2

boundary not included

Closed brick [0, 1]2

boundary included

Boundary ∂[0, 1]2

four edges only
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Open and Closed 3D Bricks

Case n = 3: unit brick (0, 1)3 and [0, 1]3

• Open cube (0, 1)3: interior points only (no faces).

• Closed cube [0, 1]3: includes interior and all 6 faces.

• Boundary ∂[0, 1]3: the 6 faces listed below:

{0, 1}×[0, 1]×[0, 1], [0, 1]×{0, 1}×[0, 1], [0, 1]×[0, 1]×{0, 1}.

Open cube (0, 1)3

faces not included

Closed cube [0, 1]3

faces included

Boundary ∂[0, 1]3

six faces only
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Interior and Boundary Points

Definition

Let n ∈ N, and let M ⊆ Rn.

1. Interior Point

A point x ∈ M is interior to M if there exists an open ball

(equivalently, an open brick) U such that x ∈ U ⊆ M .

2. Boundary Point

A point x ∈ Rn is a boundary point of M if for every open

neighborhood U containing x, the following two conditions hold:

U ∩M 6= ∅ and U ∩ (Rn \M) 6= ∅.
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Interior and Boundary Points

Examples in R2.

M1 = B1(0, 0) = {(x, y) | x2 + y2 < 1} : every point is interior.

M2 = B1(0, 0) : interior points are those with x2 + y2 < 1,

boundary points are those on the unit circle x2 + y2 = 1.

Open disk B1(0)
boundary not included

boundary S1(0)

interior of B1(0)
boundary included

Boundary S1(0) only
no interior points
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Open and Closed Sets in Rn

Definitions. Let M ⊆ Rn.

M is open ⇐⇒ every x ∈ M is interior.

M is closed ⇐⇒ Rn \M is open.

Basic examples and reasons.

• Br(x) is open: for each y ∈ Br(x) take a smaller ball

Bε(y) ⊂ Br(x).

• Br(x) is closed: its complement is open (distance to x is

continuous; {d > r} is open).
• Open n-bricks are open (product of open intervals); closed

n-bricks are closed (finite intersection of closed half-spaces).

• Rn and ∅ are both open and closed: complements are ∅
and Rn, respectively, which are open.
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Interior and Closure of a Set

Definitions.

For M ⊆ Rn:

int(M) :=the set of interior points of M (largest open subset of M),

M :=the smallest closed set containing M

(intersection of all closed supersets).

Example.

M = [0, 1) ⊆ R.

int(M) = (0, 1), M = [0, 1].
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Relative (Subspace) Topology

Definition.

Let M be a subset of Rn and U be a subset of M . We define the

relative topology on M by setting its open and closed sets as

follows:

U is open in M ⇐⇒ ∃ an open set X ⊆ Rn

such that U = M ∩X.

U is closed in M ⇐⇒ ∃ a closed set X ⊆ Rn

such that U = M ∩X.
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Relative (Subspace) Topology

Example (n = 2). M = S1 = {(x, y) | x2 + y2 = 1}.

M = S1

U = M ∩X open in M

M = S1U = M ∩X ′ closed in M

Similarly: If X is closed (e.g. intersection with a closed half-plane),

then U = M ∩X is closed in M .

Note. Whether M itself is open/closed in Rn is independent from

being open/closed in M ; any M is both open and closed in the

relative topology on M .
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Continuous vs. Smooth

Smoothness on Open/Closed Domains

Continuous means: small changes in input yield small changes

in output (no derivatives required). Smooth (infinitely

differentiable) means: all partial derivatives of all orders exist and

are continuous.

Definition (Smooth map on an open domain).

Let m,n ∈ N, U ⊆ Rm be open, V ⊆ Rn, and

f = (f1, . . . , fn) : U → V . We say f is smooth (write

f ∈ C∞(U, V )) if for every k ∈ N+, for all choices

i1, . . . , ik ∈ {1, . . . ,m} and each j ∈ {1, . . . , n}, the mixed partial

∂kfj
∂xi1 · · · ∂xik

(x)

exists for every x ∈ U .
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Smoothness on a closed domain

Definition

If U ⊆ Rm is not open (e.g. closed), we say f : U → V is smooth

if there exist an open set Û ⊆ Rm with U ⊆ Û and a smooth map

f̂ ∈ C∞(Û , V ) such that f̂ �U= f .

U Û

V

incl

f f̂ ∈ C∞(Û , V )
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Examples
• Elementary Functions: The following are smooth (C∞ on
their natural domains):

– Polynomials (on all of R).
– Trigonometric Functions: sin(x) and cos(x) (on all of R).
– Exponential Function: exp(x) (on all of R).
– Logarithm: ln(x) (on its domain, (0,∞)).

– Sums, Products, and Quotients (where the denominator is

non-zero).

– Compositions: If f and g are smooth, then f ◦ g is smooth.

• A Function That Fails C1 at a Point:

Consider the function f(x) = |x|1/3.
• The Issue: This function is not C1 at x = 0.
The derivative is f ′(x) = 1

3 |x|
−2/3 · sgn(x).

• Conclusion: limx→0 |f ′(x)| = limx→0
1

3|x|2/3 = ∞. The

derivative is not defined (it ”blows up”) at x = 0, meaning

f(x) is not differentiable at this point, and thus cannot be C1

there. 16



Differential / Jacobian Matrix

Definition. Let m,n ∈ N, U ⊆ Rm open, f = (f1, . . . , fn) ∈
C∞(U,Rn) and x = (x1, . . . , xm) ∈ U . The Jacobian (differential)

at x is the n×m matrix

Dxf =


∂f1
∂x1

(x) · · · ∂f1
∂xm

(x)
...

. . .
...

∂fn
∂x1

(x) · · · ∂fn
∂xm

(x)

 .

It represents the best linear approximation to f at x.
Example (Polar coordinates). f : [0, 1] × [0, 2π] → B1(0, 0),
f(r, φ) = (r cosφ, r sinφ). Then

∂f

∂r
(r, φ) = (cosφ, sinφ),

∂f

∂φ
(r, φ) = (−r sinφ, r cosφ).

Hence

D(r,φ)f =

(
cosφ − r sinφ
sinφ r cosφ

)
, detD(r,φ)f = r.
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Inverse Function Theorem (IFT)

Theorem

Let m ∈ N, U ⊆ Rm open, and f ∈ C∞(U,Rm). If at x0 ∈ U the

Jacobian Dx0f is invertible (i.e. detDx0f 6= 0), then there exist

open neighborhoods x0 ∈ U0 ⊆ U and f(x0) ∈ V0 ⊆ Rm such that

f �U0 : U0 → V0

is a diffeomorphism (bijective, smooth inverse).

Proof (complete outline with key steps).

• Reduction: By translation and linear change of variables

(compose with Dx0f
−1) assume x0 = 0, f(0) = 0, D0f = I.

• Fixed-point map: For y near 0, define Ty(x) = x− (f(x)− y).
Then Ty(0) = y and DTy(0) = I −Df(0) = 0.

18



Proof

• Contraction: Using continuity of Df at 0, choose a small ball

where ‖Df(x)− I‖ ≤ 1
2 , so Ty is a contraction on that ball for

all y in a small ball. By Banach’s fixed-point theorem, Ty has

a unique fixed point x, i.e. f(x) = y.

• Regularity: The fixed point depends smoothly on y (by

implicit function theorem/contractive mapping with

parameters), giving f−1 ∈ C∞(V0, U0).
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Example

Polar-annulus example.

Let U = (12 , 1)× (0, 2π) and define

f(r, φ) = (r cosφ, r sinφ).

Then Df is as before, detDf = r ∈ (12 , 1), so f is a local

diffeomorphism everywhere on U . Its image is the open annulus

V = {(x, y) ∈ R2 | 1
4 < x2 + y2 < 1} \ {(x, 0) : x > 0},

where the ray {(x, 0) : x > 0} is removed to keep the angular

coordinate single-valued. On U we have a global diffeomorphism

f : U
∼−→ V .
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Immersions: Curves and Surfaces

Definition (Immersion).

Let m,n ∈ N, U ⊆ Rm open, V ⊆ Rn, and f ∈ C∞(U, V ). We say

f is an immersion if for all x ∈ U , the Jacobian Dxf ∈ Mn×m(R)
has rank m (its m columns are linearly independent).

Specific case.

• m = 1 (parametrized curve): f(t) = (f1(t), . . . , fn(t)). Then

Dtf =

f ′
1(t)
...

f ′
n(t)

 , f immersion ⇔ Dtf 6= 0 for all t.
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Example

• m = 2, n = 3 (parametrized surface):

f(x1, x2) = (f1(x1, x2), f2(x1, x2), f3(x1, x2)) with

D(x1,x2)f =


∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

∂f3
∂x1

∂f3
∂x2

 =
( ∂f

∂x1

∂f

∂x2

)
,

so rankDf = 2 ⇔ ∂f
∂x1

and ∂f
∂x2

are linearly independent in

R3. Equivalently, all 2× 2 minors

b1 = det

(
∂f2
∂x1

∂f2
∂x2

∂f3
∂x1

∂f3
∂x2

)
, b2 = det

(
∂f3
∂x1

∂f3
∂x2

∂f1
∂x1

∂f1
∂x2

)
, b3 = det

(
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)

do not vanish simultaneously (equivalently ∂f
∂x1

× ∂f
∂x2

6= 0).
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Spherical Coordinates

Immersion of S2

Parametrization. Let (θ, ϕ) ∈ (0, π)× (0, 2π) and define

f(θ, ϕ) =
(
sin θ cosϕ, sin θ sinϕ, cos θ

)
.

Then

∂f/(∂θ) = (cos θ cosϕ, cos θ sinϕ, − sin θ)T ,

∂f/(∂ϕ) = (− sin θ sinϕ, sin θ cosϕ, 0)T .

Rank condition. The 3× 2 Jacobian [ ∂f/(∂θ) ∂f/(∂ϕ) ] has
rank 2 whenever sin θ 6= 0, i.e. for θ ∈ (0, π), hence f is an

immersion on that open strip.

Singularities (poles). At θ = 0 (north pole) or θ = π (south pole),

sin θ = 0 and thus ∂f/(∂ϕ) = 0, so rankDf ≤ 1; these are

singular points for this chart.
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Spherical Coordinates

Geometry.

• Fixing ϕ traces a meridian (e.g. the Greenwich meridian at

ϕ = 0).

• Fixing θ traces a parallel (latitude circle); θ = π/2 is the
equator.

Charts. The sphere needs at least two charts to avoid the pole

singularities; e.g. one chart missing the north pole and one

missing the south pole.
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Summary

• Defined open and closed balls, spheres, and n–bricks (open,
closed, boundary).

• Distinguished between interior, boundary, and exterior points

of subsets M ⊆ Rn.

• Defined open and closed sets, interiors, closures, and

complements.

• Introduced relative (subspace) topology: sets open or closed

in M via intersections with open/closed subsets of Rn.

• Illustrated with visual examples in R1, R2, and R3 (segments,

disks, cubes, spheres).
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Summary

• Smooth maps on open sets have derivatives of all orders; on

non-open sets they are defined by smooth extension to an

open neighborhood.

• The Jacobian Dxf captures the best linear approximation; in

polar coordinates detDf = r.

• Inverse Function Theorem: if detDx0f 6= 0, then f is locally a

diffeomorphism; polar map on an annulus is a model

example.

• Immersion U → Rn: full column rank Jacobian; curves

require nonzero velocity; surfaces require fu, fv independent
(fu × fv 6= 0).

• Spherical chart is immersive off the poles; poles are chart

singularities necessitating multiple charts to cover S2.
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Thanks
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