

Combinatorial Mesh Calculus (CMC): Lecture 9

Lectured by: Dr. Kiprian Berbatov¹
Lecture Notes Compiled by: Muhammad Azeem¹
Under the supervision of: Prof. Andrey P. Jivkov¹

 1 Department of Mechanical and Aerospace Engineering, The University of Manchester, Oxford Road,

Manchester M13 9PL, UK

MANCHESIER Euclidean Balls and Spheres

Definition.

Let
$$n \in \mathbb{N}$$
, $r \in \mathbb{R}^+$, $\vec{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$.

Open ball:
$$B_r(\vec{x}) := \{ \vec{y} = (y_1, \dots, y_n) \in \mathbb{R}^n \mid \sum_{i=1}^n (x_i - y_i)^2 < r^2 \}.$$

Closed ball:
$$\overline{B_r}(\vec{x}) := \{ \vec{y} \in \mathbb{R}^n \mid \sum_{i=1}^n (x_i - y_i)^2 \le r^2 \}.$$

Sphere:
$$S_r(\vec{x}) := \{ \vec{y} \in \mathbb{R}^n \mid \sum_{i=1}^n (x_i - y_i)^2 = r^2 \}.$$

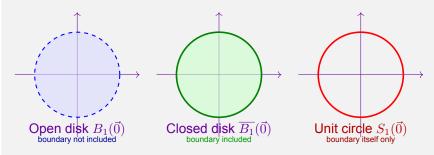
The University of Mancheste

$$r=1$$
, $\vec{x}=\vec{0}$

Case n=1:

$$B_1(0) = (-1,1), \quad \overline{B_1}(0) = [-1,1], \quad S_1(0) = \{-1,1\}.$$

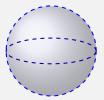
Case n=2: (open unit disk, closed unit disk, unit circle)



MANCHESTER Unit Examples at the Origin

Case n=3:

(open unit ball, closed unit ball, unit sphere)



Open ball $B_1(\vec{0})$ boundary not included



Closed ball $\overline{B_1}(\vec{0})$ boundary included

Unit sphere $S_1(\vec{0})$ boundary itself only

MANCHESTER Open/Closed *n*-Bricks

The University of Manchester

Parallelotopes

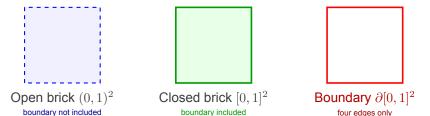
Let $n \in \mathbb{N}$ and $a_i < b_i$ for $i = 1, \ldots, n$. Open n-brick: $(a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n)$, Closed n-brick: $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]$, and Boundary:

$$\partial([a_{1}, b_{1}] \times \cdots \times [a_{n}, b_{n}]) = \bigcup_{k=1}^{n} ([a_{1}, b_{1}] \times \cdots \times [a_{k-1}, b_{k-1}] \times \{a_{k}, b_{k}\} \\ \times [a_{k+1}, b_{k+1}] \times \cdots \times [a_{n}, b_{n}])$$
$$= (\{a_{1}, b_{1}\} \times [a_{2}, b_{2}] \times \cdots \times [a_{n}, b_{n}])$$
$$\cup ([a_{1}, b_{1}] \times \{a_{2}, b_{2}\} \times \cdots \times [a_{n}, b_{n}])$$
$$\cup \cdots \cup ([a_{1}, b_{1}] \times [a_{2}, b_{2}] \times \cdots \times \{a_{n}, b_{n}\})$$

MANCHESIER Open and Closed 2D Bricks

Case n = 2: unit brick $(0, 1)^2$ and $[0, 1]^2$ (Squares/Rectangles)

- Open square $(0,1)^2$: interior points only (boundary excluded).
- Closed square $[0,1]^2$: includes all boundary edges.
- Boundary $\partial [0,1]^2$: the four edges forming the perimeter.

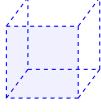


Open and Closed 3D Bricks

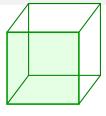
Case n = 3: unit brick $(0, 1)^3$ and $[0, 1]^3$

- Open cube $(0,1)^3$: interior points only (no faces).
- Closed cube $[0,1]^3$: includes interior and all 6 faces.
- Boundary $\partial[0,1]^3$: the 6 faces listed below:

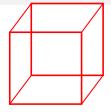
$$\{0,1\}\times[0,1]\times[0,1],\quad [0,1]\times\{0,1\}\times[0,1],\quad [0,1]\times[0,1]\times\{0,1\}.$$



Open cube $(0,1)^3$



Closed cube $[0,1]^3$



Boundary $\partial [0,1]^3$

six faces only

MANCHESIER Interior and Boundary Points

Definition

Let $n \in \mathbb{N}$, and let $M \subseteq \mathbb{R}^n$.

1. Interior Point

A point $x \in M$ is interior to M if there exists an open ball (equivalently, an open brick) U such that $x \in U \subseteq M$.

2. Boundary Point

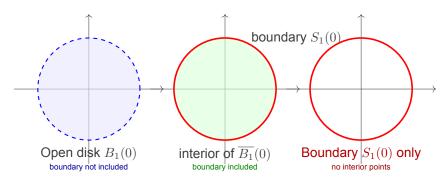
A point $x \in \mathbb{R}^n$ is a boundary point of M if for every open neighborhood U containing x, the following two conditions hold:

$$U \cap M \neq \emptyset$$
 and $U \cap (\mathbb{R}^n \setminus M) \neq \emptyset$.

MANCHESIER Interior and Boundary Points

Examples in \mathbb{R}^2 .

 $M_1 = B_1(0,0) = \{(x,y) \mid x^2 + y^2 < 1\}$: every point is interior. $M_2 = \overline{B_1}(0,0)$: interior points are those with $x^2 + y^2 < 1$, boundary points are those on the unit circle $x^2 + y^2 = 1$.



MANCHESIER Open and Closed Sets in \mathbb{R}^n

Definitions. Let $M \subseteq \mathbb{R}^n$.

$$M$$
 is open \iff every $x \in M$ is interior. M is closed $\iff \mathbb{R}^n \setminus M$ is open.

Basic examples and reasons.

- $B_r(x)$ is open: for each $y \in B_r(x)$ take a smaller ball $B_{\varepsilon}(y) \subset B_r(x)$.
- $\overline{B_r}(x)$ is closed: its complement is open (distance to x is continuous; $\{d > r\}$ is open).
- Open n-bricks are open (product of open intervals); closed *n*-bricks are closed (finite intersection of closed half-spaces).
- \mathbb{R}^n and \varnothing are both open and closed: complements are \varnothing and \mathbb{R}^n , respectively, which are open.

MANCHESIER Interior and Closure of a Set

Definitions.

For $M \subseteq \mathbb{R}^n$:

int(M) := the set of interior points of M (largest open subset of M),

 \overline{M} :=the smallest closed set containing M(intersection of all closed supersets).

Example.

$$M = [0, 1) \subseteq \mathbb{R}$$
.

$$\operatorname{int}(M) = (0, 1), \qquad \overline{M} = [0, 1].$$

MANCHESIER Relative (Subspace) Topology

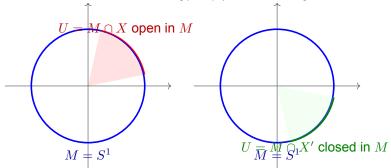
Definition.

Let M be a subset of \mathbb{R}^n and U be a subset of M. We define the relative topology on M by setting its open and closed sets as follows:

```
U is open in M \iff \exists an open set X \subseteq \mathbb{R}^n
                      such that U = M \cap X.
U is closed in M \iff \exists a closed set X \subseteq \mathbb{R}^n
                      such that U = M \cap X.
```

MANCHESTER Relative (Subspace) Topology

Example
$$(n=2)$$
. $M=S^1=\{(x,y) \mid x^2+y^2=1\}$.



Similarly: If X is closed (e.g. intersection with a closed half-plane), then $U = M \cap X$ is closed in M.

Note. Whether M itself is open/closed in \mathbb{R}^n is independent from being open/closed in M; any M is both open and closed in the relative topology on M.

MANCHESTER Continuous vs. Smooth

Smoothness on Open/Closed Domains

Continuous means: small changes in input yield small changes in output (no derivatives required). Smooth (infinitely differentiable) means: all partial derivatives of all orders exist and are continuous.

Definition (Smooth map on an open domain).

Let $m, n \in \mathbb{N}$, $U \subseteq \mathbb{R}^m$ be open, $V \subseteq \mathbb{R}^n$, and $f = (f_1, \dots, f_n) : U \to V$. We say f is smooth (write $f \in C^{\infty}(U,V)$) if for every $k \in \mathbb{N}^+$, for all choices $i_1, \ldots, i_k \in \{1, \ldots, m\}$ and each $j \in \{1, \ldots, n\}$, the mixed partial

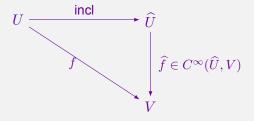
$$\frac{\partial^k f_j}{\partial x_{i_1} \cdots \partial x_{i_k}}(x)$$

exists for every $x \in U$.

MANCHESTER Smoothness on a closed domain

Definition

If $U \subseteq \mathbb{R}^m$ is *not open* (e.g. closed), we say $f: U \to V$ is smooth if there exist an open set $\widehat{U} \subseteq \mathbb{R}^m$ with $U \subseteq \widehat{U}$ and a smooth map $\widehat{f} \in C^{\infty}(\widehat{U}, V)$ such that $\widehat{f} \upharpoonright_U = f$.



- **Elementary Functions:** The following are smooth (C^{∞} on their natural domains):
 - **Polynomials** (on all of \mathbb{R}).
 - Trigonometric Functions: sin(x) and cos(x) (on all of \mathbb{R}).
 - **Exponential Function:** exp(x) (on all of \mathbb{R}).
 - Logarithm: ln(x) (on its domain, $(0, \infty)$).
 - Sums, Products, and Quotients (where the denominator is non-zero).
 - Compositions: If f and g are smooth, then $f \circ g$ is smooth.
- A Function That Fails C^1 at a Point: Consider the function $f(x) = |x|^{1/3}$.
- The Issue: This function is not C^1 at x = 0. The derivative is $f'(x) = \frac{1}{3}|x|^{-2/3} \cdot \operatorname{sgn}(x)$.
- Conclusion: $\lim_{x\to 0}|f'(x)|=\lim_{x\to 0}\frac{1}{3|x|^{2/3}}=\infty.$ The derivative is not defined (it "blows up") at x=0, meaning f(x) is not differentiable at this point, and thus cannot be C^1

MANCHESTER Differential / Jacobian Matrix

Definition. Let $m, n \in \mathbb{N}$, $U \subseteq \mathbb{R}^m$ open, $f = (f_1, \ldots, f_n) \in \mathbb{R}^m$ $C^{\infty}(U,\mathbb{R}^n)$ and $x=(x_1,\ldots,x_m)\in U$. The Jacobian (differential) at x is the $n \times m$ matrix

$$D_x f = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x) & \cdots & \frac{\partial f_1}{\partial x_m}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(x) & \cdots & \frac{\partial f_n}{\partial x_m}(x) \end{pmatrix}.$$

It represents the best linear approximation to f at x.

Example (Polar coordinates). $f:[0,1]\times[0,2\pi]\to\overline{B_1(0,0)}$, $f(r,\phi) = (r\cos\phi, r\sin\phi)$. Then

$$\frac{\partial f}{\partial r}(r,\phi) = (\cos\phi, \; \sin\phi), \qquad \frac{\partial f}{\partial \phi}(r,\phi) = (-r\sin\phi, \; r\cos\phi).$$

Hence

$$D_{(r,\phi)}f = \begin{pmatrix} \cos\phi & -r\sin\phi \\ \sin\phi & r\cos\phi \end{pmatrix}, \qquad \det D_{(r,\phi)}f = r.$$

MANCHESTER Inverse Function Theorem (IFT)

Theorem

Let $m \in \mathbb{N}$, $U \subseteq \mathbb{R}^m$ open, and $f \in C^{\infty}(U, \mathbb{R}^m)$. If at $x_0 \in U$ the Jacobian $D_{x_0}f$ is invertible (i.e. $\det D_{x_0}f \neq 0$), then there exist open neighborhoods $x_0 \in U_0 \subseteq U$ and $f(x_0) \in V_0 \subseteq \mathbb{R}^m$ such that

$$f \upharpoonright_{U_0} : U_0 \to V_0$$

is a diffeomorphism (bijective, smooth inverse).

Proof (complete outline with key steps).

- Reduction: By translation and linear change of variables (compose with $D_{x_0}f^{-1}$) assume $x_0 = 0$, f(0) = 0, $D_0f = I$.
- Fixed-point map: For y near 0, define $T_y(x) = x (f(x) y)$. Then $T_{\nu}(0) = y$ and $DT_{\nu}(0) = I - Df(0) = 0$.

- Contraction: Using continuity of Df at 0, choose a small ball where $\|Df(x) I\| \leq \frac{1}{2}$, so T_y is a contraction on that ball for all y in a small ball. By Banach's fixed-point theorem, T_y has a unique fixed point x, i.e. f(x) = y.
- Regularity: The fixed point depends smoothly on y (by implicit function theorem/contractive mapping with parameters), giving $f^{-1} \in C^{\infty}(V_0, U_0)$.

Polar-annulus example.

Let $U=(\frac{1}{2},1)\times(0,2\pi)$ and define

$$f(r,\phi) = (r\cos\phi,\ r\sin\phi).$$

Then Df is as before, $\det Df = r \in (\frac{1}{2}, 1)$, so f is a local diffeomorphism everywhere on U. Its image is the open annulus

$$V = \{(x,y) \in \mathbb{R}^2 \mid \frac{1}{4} < x^2 + y^2 < 1\} \setminus \{(x,0) : x > 0\},\$$

where the ray $\{(x,0):x>0\}$ is removed to keep the angular coordinate single-valued. On U we have a global diffeomorphism $f:U\stackrel{\sim}{\longrightarrow} V.$

MANCHESIER Immersions: Curves and Surfaces

Definition (Immersion).

Let $m, n \in \mathbb{N}$, $U \subseteq \mathbb{R}^m$ open, $V \subseteq \mathbb{R}^n$, and $f \in C^{\infty}(U, V)$. We say f is an immersion if for all $x \in U$, the Jacobian $D_x f \in M_{n \times m}(\mathbb{R})$ has rank m (its m columns are linearly independent).

Specific case.

• m=1 (parametrized curve): $f(t)=(f_1(t),\ldots,f_n(t))$. Then

$$D_t f = \begin{pmatrix} f_1'(t) \\ \vdots \\ f_n'(t) \end{pmatrix}, \qquad f \text{ immersion } \Leftrightarrow D_t f \neq 0 \text{ for all } t.$$

MANCHESTER 1824 The University of Manchester

• m=2, n=3 (parametrized surface): $f(x_1,x_2)=(f_1(x_1,x_2),f_2(x_1,x_2),f_3(x_1,x_2))$ with

$$D_{(x_1,x_2)}f = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \\ \frac{\partial f_3}{\partial x_1} & \frac{\partial f_3}{\partial x_2} \end{pmatrix} = \left(\frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \right),$$

so rank $Df=2\Leftrightarrow \frac{\partial f}{\partial x_1}$ and $\frac{\partial f}{\partial x_2}$ are linearly independent in \mathbb{R}^3 . Equivalently, all 2×2 minors

$$b_1 = \det\begin{pmatrix} \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \\ \frac{\partial f_3}{\partial x_1} & \frac{\partial f_3}{\partial x_2} \end{pmatrix}, b_2 = \det\begin{pmatrix} \frac{\partial f_3}{\partial x_1} & \frac{\partial f_3}{\partial x_2} \\ \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \end{pmatrix}, b_3 = \det\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{pmatrix}$$

do not vanish simultaneously (equivalently $\frac{\partial f}{\partial x_1} \times \frac{\partial f}{\partial x_2} \neq 0$).

MANCHESTER Spherical Coordinates

Immersion of S^2

Parametrization. Let
$$(\theta, \varphi) \in (0, \pi) \times (0, 2\pi)$$
 and define $f(\theta, \varphi) = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$.

Then

$$\partial f/(\partial \theta) = (\cos \theta \cos \varphi, \ \cos \theta \sin \varphi, \ -\sin \theta)^T,$$
$$\partial f/(\partial \varphi) = (-\sin \theta \sin \varphi, \ \sin \theta \cos \varphi, \ 0)^T.$$

Rank condition. The 3×2 Jacobian $[\partial f/(\partial \theta) \partial f/(\partial \varphi)]$ has rank 2 whenever $\sin \theta \neq 0$, i.e. for $\theta \in (0, \pi)$, hence f is an immersion on that open strip.

Singularities (poles). At $\theta = 0$ (north pole) or $\theta = \pi$ (south pole), $\sin \theta = 0$ and thus $\partial f/(\partial \varphi) = 0$, so rank $Df \leq 1$; these are singular points for this chart.

MANCHESTER Spherical Coordinates

Geometry.

- Fixing φ traces a *meridian* (e.g. the Greenwich meridian at $\varphi=0$).
- Fixing θ traces a *parallel* (latitude circle); $\theta = \pi/2$ is the equator.

Charts. The sphere needs at least two charts to avoid the pole singularities; e.g. one chart missing the north pole and one missing the south pole.

- Defined open and closed balls, spheres, and *n*-bricks (open, closed, boundary).
- Distinguished between interior, boundary, and exterior points of subsets $M \subset \mathbb{R}^n$.
- Defined open and closed sets, interiors, closures, and complements.
- Introduced relative (subspace) topology: sets open or closed in M via intersections with open/closed subsets of \mathbb{R}^n .
- Illustrated with visual examples in \mathbb{R}^1 , \mathbb{R}^2 , and \mathbb{R}^3 (segments, disks, cubes, spheres).

- Smooth maps on open sets have derivatives of all orders; on non-open sets they are defined by smooth extension to an open neighborhood.
- The Jacobian $D_x f$ captures the best linear approximation; in polar coordinates $\det Df = r$.
- Inverse Function Theorem: if $\det D_{x_0} f \neq 0$, then f is locally a diffeomorphism; polar map on an annulus is a model example.
- Immersion $U \to \mathbb{R}^n$: full column rank Jacobian; curves require nonzero velocity; surfaces require f_u, f_v independent $(f_u \times f_v \neq 0)$.
- Spherical chart is immersive off the poles; poles are chart singularities necessitating multiple charts to cover S².

MANCHESTER Thanks The University of Manchester

