

Combinatorial Mesh Calculus (CMC): Lecture 8

Lectured by: Dr. Kiprian Berbatov¹
Lecture Notes Compiled by: Muhammad Azeem¹
Under the supervision of: Prof. Andrey P. Jivkov¹

 $^{1}\mathrm{Department}$ of Mechanical and Aerospace Engineering, The University of Manchester, Oxford Road,

Manchester M13 9PL, UK

Graded-commutative rule.

If $A^{\bullet} = \bigoplus_{p>0} A^p$ is a graded algebra and $v \in A^p$, $w \in A^q$, then

$$v w = (-1)^{pq} w v.$$

Definition (Exterior algebra).

Let R be a CRWU and V an R-module. The exterior algebra $\Lambda^{\bullet}V$ is the smallest alternating (associative, unital) R-algebra generated by V, i.e. the quotient of the tensor algebra T(V) by the ideal generated by all $v \otimes v$ ($v \in V$). It is graded

$$\Lambda^{\bullet}V = \bigoplus_{p=0}^{\infty} \Lambda^{p}V, \qquad \alpha \in \Lambda^{p}V, \ \beta \in \Lambda^{q}V \ \Rightarrow \ \alpha \wedge \beta \in \Lambda^{p+q}V,$$

Definition (Exterior algebra).

$$\Lambda^{\bullet}V = \bigoplus_{p=0}^{\infty} \Lambda^{p}V, \qquad \alpha \in \Lambda^{p}V, \ \beta \in \Lambda^{q}V \ \Rightarrow \ \alpha \wedge \beta \in \Lambda^{p+q}V,$$

with $\Lambda^0 V = R$, $\Lambda^1 V = V$, and

$$\Lambda^2 V = \left\{ \sum_{k=1}^N \lambda_k \, v_k \wedge w_k \, \middle| \, N \in \mathbb{N}, \, \lambda_k \in R, \, v_k, w_k \in V \right\}.$$

The product is denoted by \wedge and satisfies graded-commutativity: if α is homogeneous of degree p and β of degree q, then $\alpha \wedge \beta = (-1)^{pq}\beta \wedge \alpha$.

MANCHESTER Basic anti-commutation with a vector

Proposition.

Let R be a CRWU, V an R-module, $v \in V = \Lambda^1 V$ and $\alpha \in \Lambda^{\bullet} V$ homogeneous of degree p. Then

$$v \wedge \alpha = (-1)^p \alpha \wedge v.$$

In particular $v \wedge v = 0$ and, if p is odd, $v \wedge \alpha + \alpha \wedge v = 0$.

Proof.

In $\Lambda^{\bullet}V$ we have the graded-commutative law with degrees $\deg v = 1$ and $\deg \alpha = p$, hence $v \wedge \alpha = (-1)^{1 \cdot p} \alpha \wedge v$. Taking p=1 yields $v \wedge v = -v \wedge v$, so $2(v \wedge v) = 0$. Since $v \wedge v$ is the image of $v \otimes v$ in the quotient $T(V)/\langle v \otimes v \rangle$, we have $v \wedge v = 0$ by construction (no characteristic assumption needed). If p is odd, $(-1)^p = -1$ and $v \wedge \alpha + \alpha \wedge v = 0$.

MANCHESIER Dimension bounds and spanning sets

Corollary (Finite rank n).

Let R be a CRWU and V a free R-module of rank n with basis e_1,\ldots,e_n . Then:

- 1. If p > n, then $\Lambda^p V = 0$.
- 2. If 1 , then the*p*-vectors

$$\{e_{i_1} \wedge e_{i_2} \wedge \cdots \wedge e_{i_p} \mid 1 \leq i_1 < \cdots < i_p \leq n\}$$

span $\Lambda^p V$.

Proof.

(1) Any pure p-tensor $v_1 \wedge \cdots \wedge v_p$ is alternating and multilinear in the v_k . Express

$$v_k = \sum_{j=1}^n \lambda_{kj} e_j$$

and expand. Every term containing a repeated basis vector e_j vanishes because $e_j \wedge e_j = 0$. With only n distinct basis vectors available, no nonzero terms remain when p > n.

(2) By multilinearity, each $v_1 \wedge \cdots \wedge v_p$ is an R-linear combination of wedges of the basis vectors. Using $e_i \wedge e_j = -e_j \wedge e_i$ we can sort factors to increasing indices; terms with repeats vanish. Hence the displayed set spans $\Lambda^p V$.

MANCHESIER Example in \mathbb{R}^2 : wedge and determinants

Let $V = \mathbb{R}^2$ with basis $e_1 = (1, 0), e_2 = (0, 1)$. Take

$$u = \lambda_1 e_1 + \lambda_2 e_2,$$
 $v = \mu_1 e_1 + \mu_2 e_2,$ $w = \kappa_1 e_1 + \kappa_2 e_2.$

Compute $u \wedge v$. Using bilinearity and $e_1 \wedge e_1 = e_2 \wedge e_2 = 0$, $e_2 \wedge e_1 = -e_1 \wedge e_2$.

$$\begin{split} u \wedge v &= (\lambda_1 e_1 + \lambda_2 e_2) \wedge (\mu_1 e_1 + \mu_2 e_2) \\ &= \lambda_1 \mu_2 \left(e_1 \wedge e_2 \right) + \lambda_2 \mu_1 \left(e_2 \wedge e_1 \right) \\ &= (\lambda_1 \mu_2 - \lambda_2 \mu_1) \, e_1 \wedge e_2 = \det \begin{pmatrix} \lambda_1 & \lambda_2 \\ \mu_1 & \mu_2 \end{pmatrix} \, e_1 \wedge e_2. \end{split}$$

Compute $u \wedge v \wedge w$. Since $\Lambda^3 \mathbb{R}^2 = 0$ (corollary with p = 3 > 2),

$$u \wedge v \wedge w = 0$$
.

The scalar coefficient of $e_1 \wedge e_2$ is the signed area (determinant) of the 2×2 matrix with rows (or columns) u, v; the third wedge vanishes because at most two independent directions live in \mathbb{R}^2 .

MANCHESIER Example in \mathbb{R}^3 : cross and triple products

Let $V = \mathbb{R}^3$ with basis e_1, e_2, e_3 . Write

$$u = \lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3,$$

$$v = \mu_1 e_1 + \mu_2 e_2 + \mu_3 e_3,$$

$$w = \kappa_1 e_1 + \kappa_2 e_2 + \kappa_3 e_3.$$

 $u \wedge v$. Expand and collect on the basis $\{e_1 \wedge e_2, e_2 \wedge e_3, e_3 \wedge e_1\}$:

$$u \wedge v = (\lambda_1 \mu_2 - \lambda_2 \mu_1) e_1 \wedge e_2 + (\lambda_2 \mu_3 - \lambda_3 \mu_2) e_2 \wedge e_3 + (\lambda_3 \mu_1 - \lambda_1 \mu_3) e_3 \wedge e_1.$$

Identification with the cross product. Using the canonical isomorphism $*: \Lambda^2 \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$*(e_2 \wedge e_3) = e_1, \quad *(e_3 \wedge e_1) = e_2, \quad *(e_1 \wedge e_2) = e_3,$$

Note: We will discuss this *canonical isomorphism* (*) in coming --- lectures. = -> = -> < ~

MANCHESIER Example in \mathbb{R}^3 : cross and triple products

We get

$$*(u \wedge v) = \begin{pmatrix} \lambda_2 \mu_3 - \lambda_3 \mu_2 \\ \lambda_3 \mu_1 - \lambda_1 \mu_3 \\ \lambda_1 \mu_2 - \lambda_2 \mu_1 \end{pmatrix} = u \times v.$$

 $u \wedge v \wedge w$. Expanding on the basis $e_1 \wedge e_2 \wedge e_3$ yields

$$u \wedge v \wedge w = \det \begin{pmatrix} \lambda_1 & \lambda_2 & \lambda_3 \\ \mu_1 & \mu_2 & \mu_3 \\ \kappa_1 & \kappa_2 & \kappa_3 \end{pmatrix} e_1 \wedge e_2 \wedge e_3.$$

The scalar is the scalar triple product $(u \times v) \cdot w$; it gives the oriented volume of the parallelepiped spanned by (u, v, w).

MANCHESTER Bases of $\Lambda^{\bullet}\mathbb{R}^2$ and $\Lambda^{\bullet}\mathbb{R}^3$

For $V = \mathbb{R}^2$ with basis e_1, e_2 :

$$\begin{split} \Lambda^{\bullet}V = & \Lambda^{0}V \ \oplus \ \Lambda^{1}V \ \oplus \ \Lambda^{2}V \\ = & \operatorname{Span}\{1\} \ \oplus \ \operatorname{Span}\{e_{1},e_{2}\} \ \oplus \ \operatorname{Span}\{e_{1} \wedge e_{2}\}. \end{split}$$

For $V = \mathbb{R}^3$ with basis e_1, e_2, e_3 :

$$\begin{split} \Lambda^{\bullet}V = & \Lambda^{0}V \oplus \Lambda^{1}V \oplus \Lambda^{2}V \oplus \Lambda^{3}V \\ = & \mathsf{Span}\{1\} \oplus \mathsf{Span}\{e_{1}, e_{2}, e_{3}\} \\ \oplus & \mathsf{Span}\{e_{1} \wedge e_{2}, \ e_{2} \wedge e_{3}, \ e_{1} \wedge e_{3}\} \\ \oplus & \mathsf{Span}\{e_{1} \wedge e_{2} \wedge e_{3}\}. \end{split}$$

MANCHESIER Basis of $\Lambda^p V$ and Binomial Count

Theorem.

Let R be a CRWU and V an n-dimensional free R-module with basis e_1, \ldots, e_n . For $p \in \{0, 1, \ldots, n\}$ the set

$$\mathcal{B}_p = \{ e_{i_1} \wedge e_{i_2} \wedge \cdots \wedge e_{i_p} \mid 1 \leq i_1 < \cdots < i_p \leq n \}$$

is a basis of $\Lambda^p V$. In particular,

$$\dim \Lambda^p V = \binom{n}{p}.$$

MANCHESTER Basis of $\Lambda^p V$ and Binomial Count

Proof.

Spanning: Any $v_1 \wedge \cdots \wedge v_p$ expands R-linearly in the basis $\{e_i\}$; terms with repeated indices vanish ($e_i \wedge e_i = 0$), and the graded-commutativity lets us sort indices increasingly, giving a combination of elements of \mathcal{B}_p . Linear independence: Consider the coordinate map $\phi: \Lambda^p V \to R^{\binom{n}{p}}$ that records coefficients w.r.t. \mathcal{B}_p ; by construction its kernel is 0, so the family is independent.

Binomial theorem and dimensions. For *t* an indeterminate,

$$\sum_{p=0}^n \dim \Lambda^p V \; t^p = \sum_{p=0}^n \binom{n}{p} t^p = (1+t)^n.$$

At t=1 this gives $\sum_{n=0}^{n} \binom{n}{n} = 2^n = \dim \Lambda^{\bullet} V$.

12

MANCHESTER Exterior Power of a Linear Map

Definition.

Let R be a CRWU, V, W R-modules, $p \in \mathbb{N}$, and $f \in Hom_R(V, W)$. The p-th exterior power

$$\Lambda^p f : \mathsf{Hom}_R \left(\Lambda^p V, \Lambda^p W \right)$$

is the unique R-linear map determined on decomposables by

$$(\Lambda^p f)(v_1 \wedge \cdots \wedge v_p) = f(v_1) \wedge \cdots \wedge f(v_p).$$

Uniqueness follows from multilinearity and alternation.

13

MANCHESIER Exterior Power of a Linear Map

Example $(V = W = \mathbb{R}^2)$.

Let $e_1 = (1,0), e_2 = (0,1)$ and write

$$f(e_1) = a_{11}e_1 + a_{21}e_2,$$
 $f(e_2) = a_{12}e_1 + a_{22}e_2.$

Then

$$(\Lambda^{2} f)(e_{1} \wedge e_{2}) = f(e_{1}) \wedge f(e_{2})$$

$$= (a_{11}e_{1} + a_{21}e_{2}) \wedge (a_{12}e_{1} + a_{22}e_{2})$$

$$= (a_{11}a_{22} - a_{21}a_{12}) e_{1} \wedge e_{2} = \det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} e_{1} \wedge e_{2}.$$

MANCHESIER Determinant via Top Exterior Power

Definition (Endomorphism).

 $\operatorname{End}_R(V) = \operatorname{Hom}_R(V, V)$ is the R-algebra of R-linear maps $V \to V$.

Top exterior power and determinant.

If dim V=n, then dim $\Lambda^n V=\binom{n}{n}=1$, so $\Lambda^n f:\Lambda^n V\to\Lambda^n V$ is multiplication by a unique scalar $\lambda \in R$:

$$(\Lambda^n f)(\alpha) = \lambda \alpha, \qquad \alpha \in \Lambda^n V.$$

We define $det(f) := \lambda$.

Compatibility with matrices. Let $e = (e_1, \ldots, e_n)$ be a basis and $A=(f)_e^e\in M_{n\times n}(R)$ the matrix of f. Then

$$\det(f) = \det(A)$$
.

MANCHESIER Determinant via Top Exterior Power

Proof sketch with details on $e_1 \wedge \cdots \wedge e_n$.

Write
$$f(e_j) = \sum_i a_{ij} e_i$$
. Then

$$(\Lambda^n f)(e_1 \wedge \dots \wedge e_n) = \bigwedge_{j=1}^n \left(\sum_{i=1}^n a_{ij} e_i \right)$$

$$= \sum_{\sigma \in S_n} (\operatorname{sgn} \sigma) \ a_{1\sigma(1)} \dots a_{n\sigma(n)} e_1 \wedge \dots \wedge e_n$$

$$= (\det A) e_1 \wedge \dots \wedge e_n,$$

so $\Lambda^n f$ is multiplication by det A.

MANCHESIER Multiplicativity of Determinant

Theorem. Let R be a CRWU, dim V = n, and $f, g \in \text{End}_R(V)$. Then

$$\det(g \circ f) = \det(g) \cdot \det(f).$$

Proof.

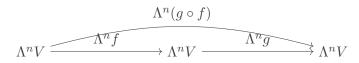
Functoriality of exterior powers gives $\Lambda^n(g \circ f) = \Lambda^n g \circ \Lambda^n f$. Since $\Lambda^n V$ is 1-dimensional, there exist unique $\lambda, \mu \in R$ with

$$\Lambda^n f = \lambda \operatorname{id}, \qquad \Lambda^n g = \mu \operatorname{id}.$$

Hence

$$\Lambda^n(g \circ f) = (\Lambda^n g) \circ (\Lambda^n f) = (\mu \operatorname{id}) \circ (\lambda \operatorname{id}) = (\mu \lambda) \operatorname{id},$$

so
$$det(g \circ f) = \mu \lambda = det(g) det(f)$$
.



MANCHESTER Interior Product (Contraction)

Definition.

Let R be a CRWU, V an R-module. For p > 1, the *interior* product (contraction)

$$i: V \times \Lambda^p V^* \longrightarrow \Lambda^{p-1} V^*, \qquad (v, \omega) \mapsto i_v \omega$$

is the unique R-bilinear map such that:

(1)
$$p = 1: i_v w = w(v) \in R, (v \in V, w \in V^*);$$

(2) Leibniz rule (degree -1 derivation):

$$i_v(\omega \wedge \eta) = i_v \omega \wedge \eta + (-1)^p \omega \wedge i_v \eta,$$

for $\omega \in \Lambda^p V^*, \ \eta \in \Lambda^q V^*.$

By R-bilinearity, extend to all p and sums.

MANCHESTER Interior Product: Computations in \mathbb{R}^2

Let $V = \mathbb{R}^2$ with basis e_1, e_2 and dual basis e^1, e^2 .

On 1-forms:

$$i_{e_1}(e^1) = 1$$
, $i_{e_1}(e^2) = 0$, $i_{e_2}(e^1) = 0$, $i_{e_2}(e^2) = 1$.

On 2-forms: using $i_v(\omega \wedge \eta) = i_v \omega \wedge \eta - \omega \wedge i_v \eta$ for $\omega \in \Lambda^1$,

$$i_{e_1}(e^1 \wedge e^2) = i_{e_1}(e^1) \wedge e^2 - e^1 \wedge i_{e_1}(e^2) = 1 \cdot e^2 - e^1 \wedge 0 = e^2,$$

$$i_{e_2}(e^1 \wedge e^2) = i_{e_2}(e^1) \wedge e^2 - e^1 \wedge i_{e_2}(e^2) = 0 \cdot e^2 - e^1 \cdot 1 = -e^1.$$

For $v = ae_1 + be_2$.

$$i_v(e^1 \wedge e^2) = a e^2 - b e^1.$$

This is the Hodge–dual of v in dimension 2.

On functions (0–forms): $i_n: \Lambda^0 V^* = R \to 0$ is the zero map.

Let R be a CRWU and V an R-module.

- 1. For any $v \in V$, $i_v \circ i_v = 0$ on $\Lambda^{\bullet}V^*$.
- 2. The canonical map

$$\phi: \Lambda^p(V^*) \longrightarrow (\Lambda^p V)^*$$

defined on decomposables by

$$\phi(w_1 \wedge \cdots \wedge w_p)(v_1 \wedge \cdots \wedge v_p) = i_{v_p} \circ \cdots \circ i_{v_1}(w_1 \wedge \cdots \wedge w_p)$$

is an isomorphism when V is finite-dimensional. Equivalently,

$$\phi(w_1 \wedge \cdots \wedge w_p)(v_1 \wedge \cdots \wedge v_p) = \det(w_i(v_j))_{1 \leq i,j \leq p}.$$

Proof.

- (1) It suffices to check on $\omega = w_1 \wedge \cdots \wedge w_p$ with $w_i \in V^*$. The operator i_v inserts v into the first slot of the alternating p-form (up to signs).
- Inserting the same vector twice yields 0 by alternation, hence $i_v^2\omega = 0$; linearity gives the claim.
- (2) For decomposables the two displayed formulas agree (straight computation using the Leibniz rule shows the cofactor expansion).

In a basis $\{e_i\}$ with dual $\{e^i\}$, both $\Lambda^p(V^*)$ and $(\Lambda^pV)^*$ have the same rank $\binom{n}{p}$, and ϕ sends the basis element $e^{i_1} \wedge \cdots \wedge e^{i_p}$ to the functional that picks the coefficient of $e_{i_1} \wedge \cdots \wedge e_{i_p}$; hence ϕ is bijective. \Box

MANCHESTER Worked Contraction Example

For $w_1, w_2 \in V^*$ and $v_1, v_2 \in V$,

$$i_{v_2} \circ i_{v_1}(w_1 \wedge w_2) = i_{v_2} (i_{v_1}(w_1) \wedge w_2 - w_1 \wedge i_{v_1}(w_2))$$

$$= i_{v_2}(w_1(v_1)) w_2 - i_{v_2}(w_1) w_2(v_1) - i_{v_2}(w_2(v_1)) w_1$$

$$= 0 \cdot w_2 - w_1(v_2) w_2(v_1) - 0 \cdot w_1 + w_2(v_2) w_1(v_1)$$

$$= \begin{vmatrix} w_1(v_1) & w_1(v_2) \\ w_2(v_1) & w_2(v_2) \end{vmatrix}.$$

Thus, for p=2,

$$\phi(w_1 \wedge w_2)(v_1 \wedge v_2) = \det \begin{pmatrix} w_1(v_1) & w_1(v_2) \\ w_2(v_1) & w_2(v_2) \end{pmatrix},$$

which matches the determinant-via-top-exterior-power paradigm.

MANCHESTER Summary of Lecture 07

Main Ideas: Exterior Algebra and Determinant Structures

- Exterior algebra Λ •V: smallest alternating, associative, unital algebra generated by a module V over a CRWU.
- It is a graded algebra:

$$\Lambda^{\bullet}V = \bigoplus_{p=0} \Lambda^{p}V, \quad \alpha \in \Lambda^{p}V, \ \beta \in \Lambda^{q}V \Rightarrow \alpha \wedge \beta = (-1)^{pq}\beta \wedge \alpha.$$

- **Basis:** For dim V = n, $\{e_{i_1} \land \cdots \land e_{i_n} \mid 1 \le i_1 < \cdots < i_p \le n\}$ is a basis of $\Lambda^p V$.
- **Dimension:** dim $\Lambda^p V = \binom{n}{n}$, and

$$\sum_{p=0}^{n} \dim \Lambda^p V \ t^p = (1+t)^n.$$

MANCHESTER Summary of Lecture 07

Main Ideas: Exterior Algebra and Determinant Structures

Exterior power of maps:

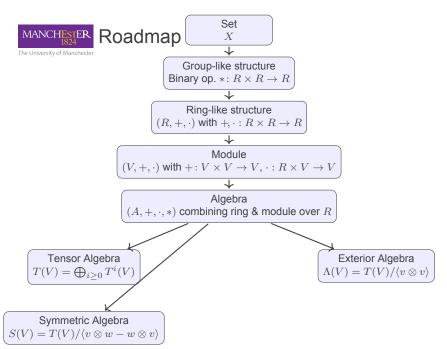
$$\Lambda^p f(v_1 \wedge \cdots \wedge v_p) = f(v_1) \wedge \cdots \wedge f(v_p).$$

- **Determinant:** For $f \in \text{End}(V)$, $\Lambda^n f$ acts on the one-dimensional $\Lambda^n V$ by multiplication with $\det(f)$, and $det(q \circ f) = det(q) det(f).$
- Interior product: $i_v: \Lambda^p V^* \to \Lambda^{p-1} V^*$ defined by

$$i_v(\omega \wedge \eta) = i_v \omega \wedge \eta + (-1)^p \omega \wedge i_v \eta, \quad i_v w = w(v).$$

• Canonical isomorphism: $\Lambda^p(V^*) \cong (\Lambda^p V)^*$, with

$$\phi(w_1 \wedge \cdots \wedge w_p)(v_1 \wedge \cdots \wedge v_p) = \det(w_i(v_j))_{1 \leq i,j \leq p}.$$



MANCHESTER Thanks The University of Manchester

