

Combinatorial Mesh Calculus (CMC): Lecture 7

Lectured by: Dr. Kiprian Berbatov¹
Lecture Notes Compiled by: Muhammad Azeem¹
Under the supervision of: Prof. Andrey P. Jiykov

Under the supervision of: Prof. Andrey P. Jivkov¹

 $^{^{1}}$ Department of Mechanical and Aerospace Engineering, The University of Manchester, Oxford Road,

by Universal Property

Let R be a **CRWU**. Let U, V be R-modules. A tensor product of U and V is an R-module X together with a bilinear map

$$\tau: U \times V \longrightarrow X$$

such that for every R–module W, $\textit{precomposition by } \tau$ yields a natural isomorphism

$$\Phi_W : \operatorname{\mathsf{Hom}}_R(X,W) \simeq \mathcal{L}(U,V;W), \qquad \Phi_W(\alpha) = \alpha \circ \tau.$$

Equivalently: bilinear maps $U \times V \to W$ factor uniquely through a **linear** map $X \to W$. We denote this essentially unique object by $U \otimes_R V$, and write $u \otimes v := \tau(u,v)$.

MANCHESIER Existence, Uniqueness, and Identities

Theorem (Existence and uniqueness up to unique iso)

For R a CRWU and U, V R-modules, a tensor product $U \otimes_R V$ exists; any two such pairs (X, τ) and (X', τ') are uniquely isomorphic by the universal property.

Canonical identities in $U \otimes_R V$ (forced by bilinearity)

$$(u_1 + u_2) \otimes v = u_1 \otimes v + u_2 \otimes v, \qquad u \otimes (v_1 + v_2) = u \otimes v_1 + u \otimes v_2,$$
$$(\lambda u) \otimes v = u \otimes (\lambda v) = \lambda(u \otimes v), \quad \forall u, u_1, u_2 \in U, \ v, v_1, v_2 \in V, \ \lambda \in R.$$

Finite bases.

If $e=(e_1,\ldots,e_m)$ is a basis of U and $f=(f_1,\ldots,f_n)$ a basis of V, then

$$\mathcal{B} = \{ e_i \otimes f_j \mid 1 \le i \le m, \ 1 \le j \le n \}$$

is a basis of $U \otimes_R V$, hence

$$\dim(U\otimes_R V)=(\dim U)(\dim V)=mn.$$

MANCHESTER Explicit Basis Example

Example.

Over $R = \mathbb{R}$, let $U = \mathbb{R}^2$ with basis

$$e_1 = (1, 0),$$

 $e_2 = (0, 1)$

and $V = \mathbb{R}^3$ with basis

$$f_1 = (1, 0, 0),$$

 $f_2 = (0, 1, 0),$
 $f_3 = (0, 0, 1).$

Then a basis of $\mathbb{R}^2 \otimes_{\mathbb{R}} \mathbb{R}^3$ is

$$\{e_1 \otimes f_1, e_1 \otimes f_2, e_1 \otimes f_3, e_2 \otimes f_1, e_2 \otimes f_2, e_2 \otimes f_3\},\$$

so $\dim(\mathbb{R}^2 \otimes \mathbb{R}^3) = 6 = 2 \cdot 3$.

Proposition (Symmetry)

There is a canonical R-module isomorphism

$$\sigma_{U,V}: U \otimes_R V \simeq V \otimes_R U, \qquad \sigma_{U,V}(u \otimes v) = v \otimes u,$$

characterized by bilinearity; it is natural in both variables.

Proof.

The map $(u,v)\mapsto v\otimes u$ is bilinear $U\times V\to V\otimes U$, hence by universality induces a unique linear map $U\otimes V\to V\otimes U$. Its inverse is the same recipe with U,V swapped.

Proposition (Unit object)

There are canonical isomorphisms

$$\lambda_U: R \otimes_R U \simeq U, \qquad \lambda_U(1 \otimes u) = u,$$

$$\rho_U: U \otimes_R R \simeq U, \qquad \rho_U(u \otimes 1) = u,$$

extended R-linearly.

Proof.

Bilinearity of $(\lambda, u) \mapsto \lambda u$ (resp. $(u, \lambda) \mapsto \lambda u$) gives unique linear maps inverse to $u \mapsto 1 \otimes u$ (resp. $u \mapsto u \otimes 1$).

MANCHESIER Definition and Isomorphism Criteria

Definition

Let U, V be R-modules. Define the R-linear map

$$\rho: U^* \otimes_R V \longrightarrow \mathsf{Hom}_R(U, V), \qquad \rho(f \otimes v)(u) := f(u) v.$$

Proposition

If U=R or V=R, or if U and V are finite-dimensional, then ρ is an isomorphism.

MANCHESTER Proposition (Proof)

Proof.

- (1) If U = R, then $U^* \cong R$ via $f \mapsto f(1)$; $\rho(\lambda \otimes v)(\mu) = \lambda \mu v$, identifying $R \otimes V \cong V$ and $\mathsf{Hom}_R(R,V) \cong V$, so ρ is the identity under these identifications.
- (2) If V=R, then $\rho:U^*\otimes R\to \operatorname{Hom}_R(U,R)=U^*$ identifies with the unit isomorphism $U^* \otimes R \cong U^*$.
- (3) If U, V are finite-dimensional with bases $(e_i)_{i=1}^m$ and $(v_i)_{i=1}^n$ and dual (e^i) , then

$$U^* \otimes V \cong R^m \otimes R^n \cong R^{mn} \cong \mathsf{Hom}_R(U,V),$$

and $\rho(e^i \otimes v_i)$ is the rank–one map $u \mapsto e^i(u) v_i$. These mn maps form the standard basis of $Hom_R(U, V)$ with respect to (e_i) and (v_i) . Hence ρ is bijective.

MANCHESIER A Structural Corollary

Corollary (Polarization into V and V^*)

Let R be a CRWU and V a finite-dimensional R-module. Any R-module obtained from V and R by iterating constructions using tensor products and Hom_R (in particularly taking duals, i.e., $\operatorname{Hom}_R(\cdot, R)$) is canonically isomorphic to

$$\underbrace{V\otimes \cdots \otimes V}_{m \text{ times}} \otimes \underbrace{V^*\otimes \cdots \otimes V^*}_{n \text{ times}} \quad \text{for some } m,n \in \mathbb{N}.$$

Proof.

Proceed by structural induction on the set S of such expressions. The base objects V and R are in S. Now take $X = V^{\otimes m} \otimes (V^*)^{\otimes n} \in S$ and $Y = V^{\otimes p} \otimes (V^*)^{\otimes q} \in S$ for some

$$m,n,p,q\in\mathbb{N}.$$
 Then $X\otimes Y\simeq V^{\otimes (m+p)}\otimes (V^*)^{\otimes (n+q)}\in S$ and $\operatorname{Hom}_R(X,Y)\simeq X^*\otimes Y\simeq V^{\otimes (n+p)}\otimes (V^*)^{\otimes (m+q)}\in S.$

MANCHESTER Dual of a Tensor Product

Note

If U, V are finite-dimensional R-modules, then there is a canonical isomorphism

$$(U \otimes_R V)^* \cong \operatorname{Hom}_R(U \otimes V, R)$$

 $\cong \operatorname{Hom}_R(U, \operatorname{Hom}_R(V, R)) \cong U^* \otimes_R V^*.$

Proof.

Use the currying isomorphism $\operatorname{Hom}_R(U \otimes V, R) \cong \mathcal{L}(U, V; R)$ and then apply $\rho: U^* \otimes V^* \xrightarrow{\sim} \mathcal{L}(U, V; R)$ (finite-dimensional case). Naturality shows canonicity.

MANCHESIER Definition and Basic Properties

Definition (Direct sum of two *R*–modules).

Let R be a CRWU and let U, V be R-modules. Define the *direct* sum $U \oplus V$ to be the cartesian product $U \times V$ endowed with componentwise addition and scalar multiplication:

$$(u_1 \oplus v_1) +_{U \oplus V} (u_2 \oplus v_2) = (u_1 +_U u_2) \oplus (v_1 +_V v_2),$$
$$\lambda \cdot_{U \oplus V} (u \oplus v) = (\lambda \cdot_U u) \oplus (\lambda \cdot_V v),$$

for all $u, u_1, u_2 \in U$, $v, v_1, v_2 \in V$, and $\lambda \in R$. We write elements of $U \oplus V$ as $u \oplus v$ (with $u \in U$, $v \in V$). The **zero** is $0_{U\oplus V}=0_U\oplus 0_V$, and the additive inverse is

$$-(u \oplus v) = (-u) \oplus (-v).$$

MANCHESTER Definition and Basic Properties

The canonical injections and projections are

$$i_U: U \to U \oplus V, \quad i_U(u) = u \oplus 0, \qquad i_V: V \to U \oplus V, \quad i_V(v) = 0 \oplus v,$$

 $\pi_U: U \oplus V \to U, \quad \pi_U(u \oplus v) = u, \qquad \pi_V: U \oplus V \to V, \quad \pi_V(u \oplus v) = v,$

satisfying $\pi_U \circ i_U = \mathrm{id}_U$, $\pi_V \circ i_V = \mathrm{id}_V$, and $\pi_U \circ i_V = \pi_V \circ i_U = 0$. **Universal property (biproduct):** For any R-module W and maps $f: U \to W, q: V \to W$, there is a unique R-linear map

$$f \oplus g : U \oplus V \to W, \qquad (f \oplus g)(u \oplus v) = f(u) +_W g(v),$$

and dually, given $h: W \to U, k: W \to V$, there is a unique R-linear map

$$\langle h, k \rangle : W \to U \oplus V, \qquad \langle h, k \rangle(w) = h(w) \oplus k(w).$$

MANCHESIER Basic Properties

Finite bases and dimension.

If U, V are finite-dimensional with bases $e = (e_1, \dots, e_m)$ and $f = (f_1, ..., f_n)$, then

$$\{e_1 \oplus 0, \dots, e_m \oplus 0, 0 \oplus f_1, \dots, 0 \oplus f_n\}$$

is a basis of $U \oplus V$. hence $\dim(U \oplus V) = \dim U + \dim V = m + n$.

$\mathbb{R} \oplus \mathbb{R}^2 \simeq \mathbb{R}^3$

Let $R=\mathbb{R}$. Take \mathbb{R} as a 1-dimensional real module with the standard basis $e_1=1$, and \mathbb{R}^2 with the standard basis $f_1=(1,0),\ f_2=(0,1).$ Then the direct sum $\mathbb{R}\oplus\mathbb{R}^2$ comes with the basis

$$\mathcal{B} = \{e_1 \oplus 0_{\mathbb{R}^2}, \ 0 \oplus f_1, \ 0 \oplus f_2\}.$$

Expanded, \mathcal{B} becomes

$$\mathcal{B} = \{1 \oplus (0,0), 0 \oplus (1,0), 0 \oplus (0,1)\}.$$

We see that \mathcal{B} is equivalent to the standard basis of \mathbb{R}^3 :

$$\mathcal{B}' = \{(1,0,0), (0,1,0), (0,0,1)\}.$$

MANCHESIER Canonical Isomorphisms

(1) Commutativity of \oplus .

$$\chi: U \oplus V \simeq V \oplus U, \quad \chi(u \oplus v) = v \oplus u.$$

 χ is linear with inverse itself.

(2) Associativity of \oplus .

$$\alpha: (U \oplus V) \oplus W \simeq U \oplus (V \oplus W), \quad \alpha((u \oplus v) \oplus w) = u \oplus (v \oplus w).$$

Linear with inverse $u \oplus (v \oplus w) \mapsto (u \oplus v) \oplus w$.

MANCHESTER Canonical Isomorphisms

(3) Unit for \oplus .

$$\eta: U \oplus 0 \simeq U, \quad \eta(u \oplus 0) = u, \qquad \zeta: 0 \oplus U \simeq U, \quad \zeta(0 \oplus u) = u.$$

Both linear with evident inverses.

(4) Dual of a direct sum.

$$\Delta: U^* \oplus V^* \simeq (U \oplus V)^*, \quad \Delta(f \oplus g)(u \oplus v) = f(u) + g(v).$$

Linear and bijective (construct inverse by restriction to the summands).

MANCHESIER Canonical Isomorphisms

(5) Distributivity of \otimes over \oplus (left).

$$\delta: (U \oplus V) \otimes W \simeq (U \otimes W) \oplus (V \otimes W), \ \delta \big((u \oplus v) \otimes w \big) = (u \otimes w) \oplus (v \otimes w).$$

Well-defined by bilinearity; inverse given by $(u \otimes w) \oplus (v \otimes w) \mapsto (u \oplus v) \otimes w.$

(6) Distributivity (right).

$$\delta': U \otimes (V \oplus W) \simeq (U \otimes V) \oplus (U \otimes W), \ \delta'(u \otimes (v \oplus w)) = (u \otimes v) \oplus (u \otimes w).$$

Analogous proof.

18

MANCHESTER External Direct Sums over an Index Set

Definition (External direct sum).

Let R be a CRWU, I a (possibly infinite) set, and $\{A_i\}_{i\in I}$ a family of R-modules. Define

$$\bigoplus_{i \in I} A_i := \{\, (a_i)_{i \in I} \mid a_i \in A_i, \text{ and } a_i = 0 \text{ for all but finitely many } i \,\}\,.$$

Operations are pointwise:

$$(a_i)_{i \in I} + (b_i)_{i \in I} = (a_i + b_i)_{i \in I}, \qquad \lambda(a_i)_{i \in I} = (\lambda a_i)_{i \in I}.$$

We write a typical element as a finite sum $a_{i_1} \oplus \cdots \oplus a_{i_n}$ with $a_{i_k} \in A_{i_k}$.

Polynomials as an Infinite Direct Sum

For a CRWU R,

$$R[x] = \bigoplus_{i=0}^{\infty} \operatorname{Span}_{R}\{x^{i}\} = \{a_{0} \mid a_{0} \in R\} \ \oplus \ \{a_{1}x \mid a_{1} \in R\} \ \oplus \ \cdots,$$

since any polynomial has finitely many nonzero coefficients. The summand $\operatorname{Span}_R\{x^i\}\cong R$ records the x^i -coefficient.

Definition (Algebra over a CRWU).

Let (V,+) be an abelian group with scalar multiplication $\cdot: R \times V \to V$ making V an R-module, and a bilinear product $*: V \times V \to V$. Then $(V,+,*,\cdot)$ is an R-algebra if * is distributive over + and R-linear in each slot:

$$(x + y) * z = x * z + y * z,$$
 $x * (y + z) = x * z + x * z,$ $(\lambda x) * y = \lambda (x * y),$ $x * (\lambda y) = \lambda (x * y),$

for all $x, y, z \in V$, $\lambda \in R$. If * is associative/unital/commutative, we say the algebra has that property.

Remark:

Lie algebras use a different product (the Lie bracket) which is bilinear, alternating, and satisfies Jacobi; it is neither associative nor commutative.

Polynomial Algebras

- $(R[x], +, \cdot)$ with usual polynomial multiplication is an associative, unital (unit 1), and commutative R-algebra.
- $R[x_1, \ldots, x_n]$ is likewise associative, unital, commutative, and infinite–dimensional (unless n=0).

Definition (Tensor algebra). Let R be a CRWU and V an R-module. The tensor algebra is

$$T(V) := \bigoplus_{i=0}^{\infty} T^{i}(V), \ T^{0}(V) := R, \ T^{1}(V) := V, \quad T^{i}(V) := V^{\otimes i} \ (i \ge 2),$$

with multiplication induced by tensor concatenation:

$$T^{i}(V) \times T^{j}(V) \to T^{i+j}(V), \qquad (x,y) \mapsto x \otimes y.$$

Thus T(V) is the smallest associative unital R-algebra containing V. If dim $V=n<\infty$ with basis e_1,\ldots,e_n , then dim $T^i(V)=n^i$ and a basis is

$$\{e_{j_1}\otimes\cdots\otimes e_{j_i}\mid 1\leq j_k\leq n\}.$$

MANCHESIER Degree and Graded Algebras

Degree. If $x \in T^i(V)$ and $y \in T^j(V)$, then

$$x \otimes y \in T^{i+j}(V), \qquad \deg(x) = i.$$

Definition (Graded R**-algebra).** An R-algebra A is *graded* if $A = \bigoplus_{i=0}^{\infty} A_i$ as R-modules and

$$A_i \cdot A_j \subseteq A_{i+j}$$
 for all $i, j \ge 0$.

Examples. Polynomial algebras $R[x_1,\ldots,x_n]$ and tensor algebras T(V) are graded by total degree.

MANCHESIER Concrete Degree Computation in $T(\mathbb{R}^2)$

Let $V = \mathbb{R}^2$ with basis $e_1 = (1,0)$, $e_2 = (0,1)$. Consider

$$x = 2 e_1 \otimes e_1 - 3 e_1 \otimes e_2 \in T^2(V),$$

 $y = e_1 \otimes e_2 \otimes e_1 + 2 e_1 \otimes e_1 \otimes e_1 \in T^3(V).$

Then deg(x) = 2, deg(y) = 3, and

$$x \otimes y \in T^5(V), \qquad y \otimes x \in T^5(V).$$

Each is a linear combination of basis monomials of length 5 in $\{e_1, e_2\}.$

MANCHESTER A Ring with $r^2 = 0$ is Anti-commutative

Proposition.

Let R be a ring such that $r^2 = 0$ for all $r \in R$. Then for all $r, s \in R$,

$$rs + sr = 0$$
 (i.e. $rs = -sr$).

Proof.

Compute $(r+s)^2$ in two ways. On the one hand, by hypothesis $(r+s)^2=0$. On the other hand,

$$(r+s)^2 = r^2 + rs + sr + s^2 = 0 + rs + sr + 0 = rs + sr.$$

Hence rs + sr = 0 for all $r, s \in R$.

MANCHESIER Alternating (Exterior-type) Algebras

Definition (Alternating algebra).

Let R be a CRWU and $A = \bigoplus_{i=0}^{\infty} A_i$ a graded associative unital R-algebra with $1 \in A_0$. We say A is alternating if

$$v^2 = 0$$
 for all $v \in A_1$.

Equivalently (over $2 \in R^{\times}$), for $v, w \in A_1$,

$$vw = -wv$$
.

Heuristic: Elements of degree 1 anticommute; the algebra is generated in degree 1 subject to these relations.

MANCHESIER Key Identities in A-G-A

Proposition.

Let $A = \bigoplus_{i=0}^{\infty} A_i$ be an alternating graded R-algebra (associative, unital). Then:

- 1. If $j \in \mathbb{N}$ is odd and $v \in A_j$ is homogeneous, then $v^2 = 0$.
- 2. If $v \in A_i$ and $w \in A_i$ are homogeneous, then

$$v w = (-1)^{ij} w v.$$

Proof

(2) First prove the claim for $v, w \in A_1$ (this is the defining property: vw = -wv). Extend to arbitrary homogeneous $v \in A_i$ and $w \in A_i$ by writing

MANCHESIER Alternating Graded Algebras

Proof.

$$v = v_1 \cdots v_i, \qquad w = w_1 \cdots w_j \qquad (v_k, w_\ell \in A_1),$$

and moving each v_k past all w_ℓ using $v_k w_\ell = -w_\ell v_k$. This introduces *i j* sign changes:

$$v w = (v_1 \cdots v_i)(w_1 \cdots w_j) = (-1)^{ij}(w_1 \cdots w_j)(v_1 \cdots v_i) = (-1)^{ij}w v.$$

(1) Put w = v with deg v = j; then

$$v^2 = (-1)^{jj}v^2 = (-1)^{j^2}v^2.$$

If *j* is odd, $(-1)^{j^2} = -1$, hence $v^2 = -v^2$, so $2v^2 = 0$. Over any CRWU in which the alternating relation is imposed (e.g. exterior algebras over \mathbb{Z} or fields of char $\neq 2$), this forces $v^2 = 0$. In particular, in the exterior algebra $\bigwedge V$, $v \wedge v = 0$ for all odd-degree homogeneous v.

MANCHESTER Worked Sign Example

Let $v=v_1v_2$ with $v_1,v_2\in A_1$ (so deg v=2) and $w=w_1w_2w_3$ with $w_k\in A_1$ (so deg w=3). Then by the previous proposition,

$$wv = (-1)^{(\deg w)(\deg v)} vw = (-1)^{3 \cdot 2} vw = (+1) vw.$$

Concretely, moving v_1 past w_1, w_2, w_3 produces 3 sign flips, and moving v_2 past w_1, w_2, w_3 produces another 3 sign flips, totaling 6 flips: an even number \Rightarrow no net sign.

MANCHESTER 1824 Summary

- $U \otimes_R V$ represents bilinear maps: $\mathsf{Hom}_R(U \otimes V, W) \cong \mathcal{L}(U, V; W)$; basis tensors $e_i \otimes f_j$ give $\mathsf{dim}(U \otimes V) = \mathsf{dim}\, U \cdot \mathsf{dim}\, V$.
- Canonical isomorphisms: $U \otimes V \cong V \otimes U$, $R \otimes U \cong U$, and $\rho: U^* \otimes V \to \mathsf{Hom}_R(U,V)$ (iso in finite-dimensional cases).
- Direct sums: $U \oplus V$ has block basis and $\dim(U \oplus V) = \dim U + \dim V$; $(U \oplus V) \otimes W \cong (U \otimes W) \oplus (V \otimes W)$; $(U \oplus V)^* \cong U^* \oplus V^*$.
- *R*–algebras: *R*–modules with a bilinear product; polynomial algebras are associative, unital, commutative.
- Tensor algebra $T(V) = \bigoplus_{i \geq 0} V^{\otimes i}$ is graded; $\dim T^i(V) = (\dim V)^i$.
- Alternating graded algebras impose $v^2=0$ for $v\in A_1$; consequence: graded sign rule $vw=(-1)^{ij}wv$, and odd-degree squares vanish.

