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Definition

The University of Manchester

by Universal Property

Let R be a CRWU. Let U, V be R—modules. A tensor product of
U and V is an R—module X together with a bilinear map

T:UXxV —X

such that for every R—module W, precomposition by T yields a
natural isomorphism

Oy 0 Hompg(X, W) ~ L(U,V; W), Py () =aor.

Equivalently: bilinear maps U x V' — W factor uniquely through a
linear map X — W. We denote this essentially unique object by
U®grV,and write u ® v := 7(u,v).



Existence, Uniqueness, and Identities
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Theorem (Existence and uniqueness up to unique iso)

For R a CRWU and U,V R—modules, a tensor product U @ V'
exists; any two such pairs (X, 7) and (X', 7’) are uniquely
isomorphic by the universal property.

Canonical identities in U @i V' (forced by bilinearity)

(ur+u2) ®v =11 Qv+ u2 v, u® (v1+v2) = U +uRus,

(Au)®@v = u®(A\v) = AMu®v), VYu,ui,us € U, v,v1,v2 €V, XA € R.



|dentities
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Ife=(e1,...,en)isabasisof U and f = (f1,..., f,) a basis of
V, then
B={e®fj|1<i<m,1<j<n}

is a basis of U @ V, hence

dm(U @z V) = (dimU)(dimV) = mn.



Explicit Basis Example
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Over R = R, let U = R? with basis
€1 :(1, 0),
€2 :(07 1)

and V = R? with basis
fl :(17070)7
f2 :(0a170)7
f3 :(0707 1)
Then a basis of R @ R3 is
{e1® fi, e1@ fa, e1® f3, 2@ f1, e2® fa, e2® f3 },

sodmR?@R3) =6=2-3.
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Proposition (Symmetry)

There is a canonical R—module isomorphism
ouyv :U®rV 2V ®rU, oyyv(u®v) =v®u,

characterized by bilinearity; it is natural in both variables.

Proof.

The map (u,v) — v ® u is bilinear U x V' — V ® U, hence by
universality induces a unique linearmap U @ V — V @ U. Its
inverse is the same recipe with U, V' swapped. O



Unit for
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Proposition (Unit object)

There are canonical isomorphisms
Ay RpU >~ U, /\U(1®u)=u,

IOU:U®RR:U7 PU(U®1):U7

extended R-linearly.

Proof.

Bilinearity of (A, u) — Au (resp. (u, \) — Au) gives unique linear
maps inverse to u — 1 ® u (resp. u — u ® 1). Ol



MasEeEN Definition and Isomorphism Criteria
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Let U,V be R—modules. Define the R—linear map

p:U*®rV — Homp(U,V),  p(f ®v)(u) := f(u)wv.

IfU=RorV = R,orif U and V are finite-dimensional, then p is
an isomorphism.



Proposition (Proof)
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Proof.

(N IfU =R, thenU* = Rvia f — f(1); p(A®@v)(1) = A,
identifying R® V = V and Homg (R, V) = V, so p is the identity
under these identifications.

(2)If V=R, then p: U* ® R — Hompg(U, R) = U* identifies with
the unit isomorphism U* @ R = U*.

(3) If U,V are finite-dimensional with bases (e;)7; and (v;)7_,
and dual ('), then

U*®V = R™® R" =~ R™ =~ Homg(U, V),

and p(e’ ® v;) is the rank—one map u > €’(u) v;. These mn maps
form the standard basis of Hompz(U, V') with respect to (e;) and
(vj). Hence p is bijective. O
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A Structural Corollary
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Corollary (Polarization into V' and V*)

Let R be a CRWU and V a finite-dimensional R—module. Any
R—module obtained from V' and R by iterating constructions using
tensor products and Homp, (in particularly taking duals, i.e.,
Hompg(+, R)) is canonically isomorphic to

Ve -V eV'®---@V* forsomem,ncN.

-~

m times n times

Proof.

Proceed by structural induction on the set S of such expressions.
The base objects V and R are in S. Now take

X=Vog V% cSandY = Ve g (V*)® ¢ S for some
m,n,p,q € N. Then X Y ~ V®(m+p) @ (V*)®(+d) ¢ § and
Homg(X,Y) >~ X* @Y ~ VO0+p) @ (V*)8(mtd) ¢ g, O



Dual of a Tensor Product
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If U,V are finite-dimensional R—modules, then there is a
canonical isomorphism

(U®r V)" =2 Homg(U ® V, R)
=~ Homp(U,Homgz(V,R)) = U* @ V"

Proof.
Use the currying isomorphism Homy (U ® V, R) = L(U,V; R) and

~

then apply p: U* @ V* — L(U, V; R) (finite-dimensional case).
Naturality shows canonicity. O



Definition and Basic Properties
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Definition (Direct sum of two R—modules).

Let R be a CRWU and let U,V be R—modules. Define the direct
sum U &V to be the cartesian product U x V endowed with
componentwise addition and scalar multiplication:

(u1 ®v1) +uey (U2 ®v2) = (u1 +yuz) & (v1 +v v2),
Auey (udv)=Avu) & (Avv),

for all u,uy,us € U, v,v1,v9 € V,and A € R. We write elements
of UV asudv (withu e U,v e V). The zero is
Ovev = Oy @ Oy, and the additive inverse is

—(u®v) = (—u) ® (-v).



Definition and Basic Properties
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The canonical injections and projections are

w:U—=UdV, iglu)=ud0, iv: VUV, iv(v) =080,
UV =>U, 7my(udv)=mu, v : UV =V, my(udv)=u,
satisfying ny o iy = idy, my o iy =idy, and 7y o iy = wy o iy = 0.

Universal property (biproduct): For any R—module W and maps
f:U—=W,qg:V — W, there is a unique R-linear map

fog:UdV =W, (feg)(udv) = f(u) +w g(v),

and dually, given h: W — U, k: W — V, there is a unique R-linear
map

(hk) : W —=U®®YV, (h, k) (w) = h(w) ® k(w).



Basic Properties
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Finite bases and dimension.

If U,V are finite-dimensional with bases e = (ey,...,e,) and

f:(flv"'afn)athen
{e190,...,6, ®0, 0 f1,...,08 fr, }

isabasisof U@V,
hence dm(U @ V) =dimU +dimV = m + n.



Example
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Let R = R. Take R as a 1-dimensional real module with the
standard basis e¢; = 1, and R? with the standard basis

fi = (1,0), fo = (0,1). Then the direct sum R @ R? comes with
the basis

B={e1® 02, 0& f1, 00 fo}.

Expanded, B becomes
B={1(0,0), 0¢(1,0), 0& (0,1)}.
We see that B is equivalent to the standard basis of R3:

B ={(1,0,0), (0,1,0), (0,0,1)}.



ARSI Canonical Isomorphisms
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(1) Commutativity of ®.

x:UeV~Vael xudv)=vdu.

x is linear with inverse itself.

(2) Associativity of &.

a:UsV)oWxUs(VeW), a((udv)dw)=ud (vow).

Linear with inverse u ® (v ® w) — (u ® v) ® w.



Canonical Isomorphisms
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(3) Unit for .

n:U®0~U, nud0)=u, C:00pU~U, ((0@u)=mu.

Both linear with evident inverses.

(4) Dual of a direct sum.

AUV ~UaV), Af®g)(udv)=f(u)+gv).

Linear and bijective (construct inverse by restriction to the
summands).



Canonical Isomorphisms
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(5) Distributivity of @ over @ (left).

§: (UaV)QW ~ (UsW)a(VeW), §((udv)®w) = (uQw)d(vew).

Well-defined by bilinearity; inverse given by
(LRW)®(vew)— (LB V) w.

(6) Distributivity (right).

& UR(VeWw) ~ (U”V)a(UeW), §(ue(vdw)) = (u@v)®(u®w).

Analogous proof.



External Direct Sums over an Index Set
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Definition (External direct sum).

Let R be a CRWU, I a (possibly infinite) set, and {A;};c; a family
of R—modules. Define

@Ai = {(ai)ie] ’ a; € A;, anda; =0 for all but finitely many ¢ } 5
el

Operations are pointwise:
(@g)ier + (bi)ier = (a; + bi e, Maq)ier = (Aai)ier-

We write a typical element as a finite sum a;, ® - - - @ a;,, with
ag, € Alk



RIS xarole
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Polynomials as an Infinite Direct Sum

Fora CRWU R,

Rlz] = @D Spang{z'} = {ao | ao € R} @ {a1z|m €R} & ---,
i=0

since any polynomial has finitely many nonzero coefficients. The
summand Spany{z‘} = R records the z'—coefficient.

20



fi-Algebras
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Definition (Algebra over a CRWU).

Let (V,+) be an abelian group with scalar multiplication

- R xV — V making V an R—module, and a bilinear product
x:V xV — V. Then (V,+, %, ) is an R—algebra if  is distributive
over + and R-linear in each slot:

(z+y)xz=z*x2+y=*z, zx(y+z)=xxz+T*2
(Az) xy = Az * y), zx (A\y) = Mz *y),

forall z,y,z € V, A € R. If x is associative/unital/commutative, we
say the algebra has that property.

Remark:

Lie algebras use a different product (the Lie bracket) which is
bilinear, alternating, and satisfies Jacobi; it is neither associative
nor commutative.

21



Examples
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Polynomial Algebras

e (R[z],+,-) with usual polynomial multiplication is an
associative, unital (unit 1), and commutative R—algebra.

e Rlxi,...,x,] is likewise associative, unital, commutative, and
infinite—dimensional (unless n = 0).

22



Tensor Algebra T'(V)
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Definition (Tensor algebra). Let R be a CRWU and V an R—mod-
ule. The tensor algebra is

=@PT(V), T°V):=R, T"(V):=V, T (V):=V(i>2),

with multiplication induced by tensor concatenation:

THV) x TV(V) = T(V), (r,9) » @Y.

Thus T'(V) is the smallest associative unital R—algebra contain-

ing V. If dimV = n < oo with basis ey, ..., e,, then dim T (V) =
n' and a basis is

{ejy@ - ®ej [1<jp<n}

The full algebra has the graded decomposition T'(V') = @2, T%(V).



Degree and Graded Algebras
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Degree. If z € T(V) and y € T7(V), then
r®yc T (V), deg(z) =

Definition (Graded R—algebra). An R—algebra A is graded if
A =@;2, A; as R-modules and

A; - Aj C A/L'Jrj foralli,5 > 0.

Examples. Polynomial algebras R[z1,...,z,]| and tensor
algebras T'(V') are graded by total degree.

24



Concrete Degree Computation in 7'(R?)
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Let V = R? with basis e; = (1,0), ez = (0, 1). Consider

T=2e1®e; — 3e;® ey ET2(V),
Y= e1@es®er + 2e1®@e1 Der € T(V).

Then deg(z) = 2, deg(y) = 3, and
r®yeT(V), yz e T (V).

Each is a linear combination of basis monomials of length 5 in

{e1,e2}.

25



A Ring with 72 = 0 is Anti-commutative
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Proposition.

Let R be aring such that 72> = 0 for all » € R. Thenforall r, s € R,

rs+sr=0 (i.e.rs= —sr).

Proof.

Compute (r + s)? in two ways. On the one hand, by hypothesis
(r + 5)? = 0. On the other hand,

(r+s)?=r’4+rs+sr+s>=0+rs+sr+0=rs+sr

Hence rs +sr =0forallr,s € R. Ol
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Alternating (Exterior-type) Algebras
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Definition (Alternating algebra).

Let R be a CRWU and A = B;°, A; a graded associative unital
R—algebra with 1 € Ay. We say A is alternating if

vP=0 forallve A;.
Equivalently (over 2 € R*), for v,w € Aj,
VW = —W.

Heuristic: Elements of degree 1 anticommute; the algebra is gen-
erated in degree 1 subject to these relations.

27



Key Identities in A-G-A
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Proposition.

Let A = ;2 A; be an alternating graded R—algebra
(associative, unital). Then:
1. If j € Nis odd and v € A; is homogeneous, then v2 =0.
2. Ifv e A; and w € A; are homogeneous, then

vw= (-1 wo.

Proof

(2) First prove the claim for v, w € A; (this is the defining
property: vw = —wv). Extend to arbitrary homogeneous v € A;
and w € A; by writing

28



Alternating Graded Algebras
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V=010, w=wi- W (vg, wp € Ay),

and moving each v past all wy using vyw, = —wyvg. This
introduces 75 sign changes:

vw = (v -+ v)(wy - wj) = (1) (wy - wy)(v1 - v;) = (=) wo.

(1) Put w = v with degv = j; then

v? = (=1)70? = (=1)7"02,

If j is odd, (—1)7° = —1, hence v2 = —v?, s0 2v% = 0. Over any
CRWU in which the alternating relation is imposed (e.g. exterior
algebras over Z or fields of char # 2), this forces v? = 0. In
particular, in the exterior algebra A\ V, v A v = 0 for all odd-degree
homogeneous v. O
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Worked Sign Example
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Let v = vyvy with vy, v € A; (so degv = 2) and w = wywows With
wy € Aj (so degw = 3). Then by the previous proposition,

wy = (—1)(de9w)(Aegv) 4y — (—1)32 py = (41) vw.

Concretely, moving v past w1, w2, w3 produces 3 sign flips, and
moving ve past wy, ws, ws produces another 3 sign flips, totaling 6
flips: an even number = no net sign.

30
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e U ®pr V represents bilinear maps:
Homg(U @ V,W) = L(U,V;W); basis tensors e; ® f; give
dm(U @ V) =dimU -dimV.
e Canonical isomorphisms: U@V =V U, RoU = U, and
p:U*®V — Homg(U, V) (iso in finite-dimensional cases).
e Direct sums: U & V has block basis and
dm(U & V) =dimU +dimV;
UaV)oW2UaaW)s (VW) UsV)*=U*aV*.
e RR—algebras: R—modules with a bilinear product; polynomial
algebras are associative, unital, commutative.

e Tensor algebra T(V) = @, V' is graded;
dim T%(V) = (dim V)7, -

e Alternating graded algebras impose v? = 0 forv € Ay;
consequence: graded sign rule vw = (—1)Ywv, and
odd-degree squares vanish. .
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