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Definition

by Universal Property

Let R be a CRWU. Let U, V be R–modules. A tensor product of

U and V is an R–module X together with a bilinear map

τ : U × V −→ X

such that for every R–module W , precomposition by τ yields a

natural isomorphism

ΦW : HomR(X,W ) ' L(U, V ;W ), ΦW (α) = α ◦ τ.

Equivalently: bilinear maps U × V → W factor uniquely through a

linear map X → W . We denote this essentially unique object by

U ⊗R V , and write u⊗ v := τ(u, v).
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Existence, Uniqueness, and Identities

Theorem (Existence and uniqueness up to unique iso)

For R a CRWU and U, V R–modules, a tensor product U ⊗R V
exists; any two such pairs (X, τ) and (X ′, τ ′) are uniquely

isomorphic by the universal property.

Canonical identities in U ⊗R V (forced by bilinearity)

(u1+u2)⊗ v = u1⊗ v+u2⊗ v, u⊗ (v1+ v2) = u⊗ v1+u⊗ v2,

(λu)⊗v = u⊗(λv) = λ(u⊗v), ∀u, u1, u2 ∈ U, v, v1, v2 ∈ V, λ ∈ R.
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Identities

Finite bases.

If e = (e1, . . . , em) is a basis of U and f = (f1, . . . , fn) a basis of

V , then

B = { ei ⊗ fj | 1 ≤ i ≤ m, 1 ≤ j ≤ n }

is a basis of U ⊗R V , hence

dim(U ⊗R V ) = (dimU)(dimV ) = mn.
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Explicit Basis Example

Example.

Over R = R, let U = R2 with basis

e1 =(1, 0),

e2 =(0, 1)

and V = R3 with basis

f1 =(1, 0, 0),

f2 =(0, 1, 0),

f3 =(0, 0, 1).

Then a basis of R2 ⊗R R3 is

{ e1 ⊗ f1, e1 ⊗ f2, e1 ⊗ f3, e2 ⊗ f1, e2 ⊗ f2, e2 ⊗ f3 },

so dim(R2 ⊗ R3) = 6 = 2 · 3.
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Symmetry for ⊗

Proposition (Symmetry)

There is a canonical R–module isomorphism

σU,V : U ⊗R V ' V ⊗R U, σU,V (u⊗ v) = v ⊗ u,

characterized by bilinearity; it is natural in both variables.

Proof.

The map (u, v) 7→ v ⊗ u is bilinear U × V → V ⊗ U , hence by

universality induces a unique linear map U ⊗ V → V ⊗ U . Its

inverse is the same recipe with U, V swapped.
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Unit for ⊗

Proposition (Unit object)

There are canonical isomorphisms

λU : R⊗R U ' U, λU (1⊗ u) = u,

ρU : U ⊗R R ' U, ρU (u⊗ 1) = u,

extended R–linearly.

Proof.

Bilinearity of (λ, u) 7→ λu (resp. (u, λ) 7→ λu) gives unique linear

maps inverse to u 7→ 1⊗ u (resp. u 7→ u⊗ 1).
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Definition and Isomorphism Criteria

Definition

Let U, V be R–modules. Define the R–linear map

ρ : U∗ ⊗R V −→ HomR(U, V ), ρ(f ⊗ v)(u) := f(u) v.

Proposition

If U = R or V = R, or if U and V are finite-dimensional, then ρ is

an isomorphism.
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Proposition (Proof)

Proof.

(1) If U = R, then U∗ ∼= R via f 7→ f(1); ρ(λ⊗ v)(µ) = λµ v,
identifying R⊗ V ∼= V and HomR(R, V ) ∼= V , so ρ is the identity

under these identifications.

(2) If V = R, then ρ : U∗ ⊗R → HomR(U,R) = U∗ identifies with
the unit isomorphism U∗ ⊗R ∼= U∗.
(3) If U, V are finite-dimensional with bases (ei)

m
i=1 and (vj)

n
j=1

and dual (ei), then

U∗ ⊗ V ∼= Rm ⊗Rn ∼= Rmn ∼= HomR(U, V ),

and ρ(ei ⊗ vj) is the rank–one map u 7→ ei(u) vj . These mn maps

form the standard basis of HomR(U, V ) with respect to (ei) and
(vj). Hence ρ is bijective.

9



A Structural Corollary

Corollary (Polarization into V and V ∗)

Let R be a CRWU and V a finite-dimensional R–module. Any

R–module obtained from V and R by iterating constructions using

tensor products and HomR (in particularly taking duals, i.e.,

HomR(·, R)) is canonically isomorphic to

V ⊗ · · · ⊗ V︸ ︷︷ ︸
m times

⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
n times

for some m,n ∈ N.

Proof.

Proceed by structural induction on the set S of such expressions.

The base objects V and R are in S. Now take

X = V ⊗m ⊗ (V ∗)⊗n ∈ S and Y = V ⊗p ⊗ (V ∗)⊗q ∈ S for some

m,n, p, q ∈ N. Then X ⊗ Y ' V ⊗(m+p) ⊗ (V ∗)⊗(n+q) ∈ S and

HomR(X,Y ) ' X∗ ⊗ Y ' V ⊗(n+p) ⊗ (V ∗)⊗(m+q) ∈ S.
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Dual of a Tensor Product

Note

If U, V are finite-dimensional R–modules, then there is a

canonical isomorphism

(U ⊗R V )∗ ∼= HomR(U ⊗ V,R)
∼= HomR

(
U,HomR(V,R)

) ∼= U∗ ⊗R V ∗.

Proof.

Use the currying isomorphism HomR(U ⊗ V,R) ∼= L(U, V ;R) and
then apply ρ : U∗ ⊗ V ∗ ∼−→ L(U, V ;R) (finite-dimensional case).

Naturality shows canonicity.
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Definition and Basic Properties

Definition (Direct sum of two R–modules).

Let R be a CRWU and let U, V be R–modules. Define the direct

sum U ⊕ V to be the cartesian product U × V endowed with

componentwise addition and scalar multiplication:

(u1 ⊕ v1) +U⊕V (u2 ⊕ v2) = (u1 +U u2 ) ⊕ ( v1 +V v2 ),

λ ·U⊕V (u⊕ v) = (λ ·U u) ⊕ (λ ·V v),

for all u, u1, u2 ∈ U , v, v1, v2 ∈ V , and λ ∈ R. We write elements

of U ⊕ V as u⊕ v (with u ∈ U , v ∈ V ). The zero is

0U⊕V = 0U ⊕ 0V , and the additive inverse is

−(u⊕ v) = (−u)⊕ (−v).
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Definition and Basic Properties

The canonical injections and projections are

iU : U → U ⊕ V, iU (u) = u⊕ 0, iV : V → U ⊕ V, iV (v) = 0⊕ v,

πU : U ⊕ V → U, πU (u⊕ v) = u, πV : U ⊕ V → V, πV (u⊕ v) = v,

satisfying πU ◦ iU = idU , πV ◦ iV = idV , and πU ◦ iV = πV ◦ iU = 0.
Universal property (biproduct): For any R–module W and maps

f : U → W , g : V → W , there is a unique R–linear map

f ⊕ g : U ⊕ V → W, (f ⊕ g)(u⊕ v) = f(u) +W g(v),

and dually, given h : W → U , k : W → V , there is a unique R–linear
map

〈h, k〉 : W → U ⊕ V, 〈h, k〉(w) = h(w)⊕ k(w).
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Basic Properties

Finite bases and dimension.

If U, V are finite-dimensional with bases e = (e1, . . . , em) and
f = (f1, . . . , fn), then

{ e1 ⊕ 0, . . . , em ⊕ 0, 0⊕ f1, . . . , 0⊕ fn }

is a basis of U ⊕ V ,

hence dim(U ⊕ V ) = dimU + dimV = m+ n.
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Example

R⊕ R2 ' R3

Let R = R. Take R as a 1–dimensional real module with the

standard basis e1 = 1, and R2 with the standard basis

f1 = (1, 0), f2 = (0, 1). Then the direct sum R⊕ R2 comes with

the basis

B = {e1 ⊕ 0R2 , 0⊕ f1, 0⊕ f2}.

Expanded, B becomes

B = {1⊕ (0, 0), 0⊕ (1, 0), 0⊕ (0, 1)}.

We see that B is equivalent to the standard basis of R3:

B′ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
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Canonical Isomorphisms

(1) Commutativity of ⊕.

χ : U ⊕ V ' V ⊕ U, χ(u⊕ v) = v ⊕ u.

χ is linear with inverse itself.

(2) Associativity of ⊕.

α : (U ⊕ V )⊕W ' U ⊕ (V ⊕W ), α((u⊕ v)⊕w) = u⊕ (v ⊕w).

Linear with inverse u⊕ (v ⊕ w) 7→ (u⊕ v)⊕ w.
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Canonical Isomorphisms

(3) Unit for ⊕.

η : U ⊕ 0 ' U, η(u⊕ 0) = u, ζ : 0⊕ U ' U, ζ(0⊕ u) = u.

Both linear with evident inverses.

(4) Dual of a direct sum.

∆ : U∗ ⊕ V ∗ ' (U ⊕ V )∗, ∆(f ⊕ g)(u⊕ v) = f(u) + g(v).

Linear and bijective (construct inverse by restriction to the

summands).
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Canonical Isomorphisms

(5) Distributivity of ⊗ over ⊕ (left).

δ : (U⊕V )⊗W ' (U⊗W )⊕(V⊗W ), δ
(
(u⊕v)⊗w

)
= (u⊗w)⊕(v⊗w).

Well-defined by bilinearity; inverse given by

(u⊗ w)⊕ (v ⊗ w) 7→ (u⊕ v)⊗ w.

(6) Distributivity (right).

δ′ : U⊗(V⊕W ) ' (U⊗V )⊕(U⊗W ), δ′(u⊗(v⊕w)) = (u⊗v)⊕(u⊗w).

Analogous proof.
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External Direct Sums over an Index Set

Definition (External direct sum).

Let R be a CRWU, I a (possibly infinite) set, and {Ai}i∈I a family

of R–modules. Define⊕
i∈I

Ai := { (ai)i∈I | ai ∈ Ai, and ai = 0 for all but finitely many i } .

Operations are pointwise:

(ai)i∈I + (bi)i∈I = (ai + bi)i∈I , λ(ai)i∈I = (λai)i∈I .

We write a typical element as a finite sum ai1 ⊕ · · · ⊕ ain with

aik ∈ Aik .
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Example

Polynomials as an Infinite Direct Sum

For a CRWU R,

R[x] =

∞⊕
i=0

SpanR{xi} = {a0 | a0 ∈ R} ⊕ {a1x | a1 ∈ R} ⊕ · · · ,

since any polynomial has finitely many nonzero coefficients. The

summand SpanR{xi} ∼= R records the xi–coefficient.
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R–Algebras

Definition (Algebra over a CRWU).

Let (V,+) be an abelian group with scalar multiplication

· : R× V → V making V an R–module, and a bilinear product

∗ : V × V → V . Then (V,+, ∗, ·) is an R–algebra if ∗ is distributive
over + and R–linear in each slot:

(x+ y) ∗ z = x ∗ z + y ∗ z, x ∗ (y + z) = x ∗ z + x ∗ z,
(λx) ∗ y = λ(x ∗ y), x ∗ (λy) = λ(x ∗ y),

for all x, y, z ∈ V , λ ∈ R. If ∗ is associative/unital/commutative, we

say the algebra has that property.

Remark:

Lie algebras use a different product (the Lie bracket) which is

bilinear, alternating, and satisfies Jacobi; it is neither associative

nor commutative.
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Examples

Polynomial Algebras

• (R[x],+, ·) with usual polynomial multiplication is an

associative, unital (unit 1), and commutative R–algebra.

• R[x1, . . . , xn] is likewise associative, unital, commutative, and

infinite–dimensional (unless n = 0).
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Tensor Algebra T (V )

Definition (Tensor algebra). Let R be a CRWU and V an R–mod-

ule. The tensor algebra is

T (V ) :=

∞⊕
i=0

T i(V ), T 0(V ) := R, T 1(V ) := V, T i(V ) := V ⊗i (i ≥ 2),

with multiplication induced by tensor concatenation:

T i(V )× T j(V ) → T i+j(V ), (x, y) 7→ x⊗ y.

Thus T (V ) is the smallest associative unital R–algebra contain-

ing V . If dimV = n < ∞ with basis e1, . . . , en, then dimT i(V ) =
ni and a basis is

{ ej1 ⊗ · · · ⊗ eji | 1 ≤ jk ≤ n }.

The full algebra has the graded decomposition T (V ) =
⊕∞

i=0 T
i(V ).
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Degree and Graded Algebras

Degree. If x ∈ T i(V ) and y ∈ T j(V ), then

x⊗ y ∈ T i+j(V ), deg(x) = i.

Definition (Graded R–algebra). An R–algebra A is graded if

A =
⊕∞

i=0Ai as R–modules and

Ai ·Aj ⊆ Ai+j for all i, j ≥ 0.

Examples. Polynomial algebras R[x1, . . . , xn] and tensor

algebras T (V ) are graded by total degree.
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Concrete Degree Computation in T (R2)

Let V = R2 with basis e1 = (1, 0), e2 = (0, 1). Consider

x = 2 e1 ⊗ e1 − 3 e1 ⊗ e2 ∈ T 2(V ),

y = e1 ⊗ e2 ⊗ e1 + 2 e1 ⊗ e1 ⊗ e1 ∈ T 3(V ).

Then deg(x) = 2, deg(y) = 3, and

x⊗ y ∈ T 5(V ), y ⊗ x ∈ T 5(V ).

Each is a linear combination of basis monomials of length 5 in
{e1, e2}.
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A Ring with r2 = 0 is Anti-commutative

Proposition.

Let R be a ring such that r2 = 0 for all r ∈ R. Then for all r, s ∈ R,

rs+ sr = 0 (i.e. rs = −sr).

Proof.

Compute (r + s)2 in two ways. On the one hand, by hypothesis

(r + s)2 = 0. On the other hand,

(r + s)2 = r2 + rs+ sr + s2 = 0 + rs+ sr + 0 = rs+ sr.

Hence rs+ sr = 0 for all r, s ∈ R.
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Alternating (Exterior-type) Algebras

Definition (Alternating algebra).

Let R be a CRWU and A =
⊕∞

i=0Ai a graded associative unital

R–algebra with 1 ∈ A0. We say A is alternating if

v2 = 0 for all v ∈ A1.

Equivalently (over 2 ∈ R×), for v, w ∈ A1,

vw = −wv.

Heuristic: Elements of degree 1 anticommute; the algebra is gen-

erated in degree 1 subject to these relations.
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Key Identities in A-G-A

Proposition.

Let A =
⊕∞

i=0Ai be an alternating graded R–algebra
(associative, unital). Then:

1. If j ∈ N is odd and v ∈ Aj is homogeneous, then v2 = 0.

2. If v ∈ Ai and w ∈ Aj are homogeneous, then

v w = (−1)ij w v.

Proof

(2) First prove the claim for v, w ∈ A1 (this is the defining

property: vw = −wv). Extend to arbitrary homogeneous v ∈ Ai

and w ∈ Aj by writing
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Alternating Graded Algebras

Proof.

v = v1 · · · vi, w = w1 · · ·wj (vk, w` ∈ A1),

and moving each vk past all w` using vkw` = −w`vk. This
introduces ij sign changes:

v w = (v1 · · · vi)(w1 · · ·wj) = (−1)ij(w1 · · ·wj)(v1 · · · vi) = (−1)ijw v.

(1) Put w = v with deg v = j; then

v2 = (−1)jjv2 = (−1)j
2
v2.

If j is odd, (−1)j
2
= −1, hence v2 = −v2, so 2v2 = 0. Over any

CRWU in which the alternating relation is imposed (e.g. exterior

algebras over Z or fields of char 6= 2), this forces v2 = 0. In
particular, in the exterior algebra

∧
V , v ∧ v = 0 for all odd-degree

homogeneous v.
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Worked Sign Example

Let v = v1v2 with v1, v2 ∈ A1 (so deg v = 2) and w = w1w2w3 with

wk ∈ A1 (so degw = 3). Then by the previous proposition,

wv = (−1)(degw)(deg v) vw = (−1)3·2 vw = (+1) vw.

Concretely, moving v1 past w1, w2, w3 produces 3 sign flips, and

moving v2 past w1, w2, w3 produces another 3 sign flips, totaling 6
flips: an even number ⇒ no net sign.
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Summary

• U ⊗R V represents bilinear maps:

HomR(U ⊗ V,W ) ∼= L(U, V ;W ); basis tensors ei ⊗ fj give
dim(U ⊗ V ) = dimU · dimV .

• Canonical isomorphisms: U ⊗ V ∼= V ⊗ U , R⊗ U ∼= U , and

ρ : U∗ ⊗ V → HomR(U, V ) (iso in finite-dimensional cases).

• Direct sums: U ⊕ V has block basis and

dim(U ⊕ V ) = dimU + dimV ;

(U ⊕ V )⊗W ∼= (U ⊗W )⊕ (V ⊗W ); (U ⊕ V )∗ ∼= U∗ ⊕ V ∗.

• R–algebras: R–modules with a bilinear product; polynomial

algebras are associative, unital, commutative.

• Tensor algebra T (V ) =
⊕

i≥0 V
⊗i is graded;

dimT i(V ) = (dimV )i.

• Alternating graded algebras impose v2 = 0 for v ∈ A1;

consequence: graded sign rule vw = (−1)ijwv, and
odd-degree squares vanish. 31



Thanks
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