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Dimension

Let R be a commutative ring with unity (CRWU), and let V be an

R–module.

Definitions

• V is free if it has a basis, i.e. a subset E ⊆ V such that every

v ∈ V can be written uniquely as a finite R–linear
combination of elements of E.

• V is finite–dimensional if it has a finite basis.

• If E = {e1, . . . , en} is a basis of V , we write dimE V = n.

Remarks: Free modules generalize vector spaces when the un-

derlying field is replaced by a ring. The existence of a basis en-

sures that every element can be expressed uniquely in terms of

simple building blocks.
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Well–defined dimension for free modules

Theorem

Let R be a CRWU and V a finite-dimensional R–module. If E and

F are bases of V , then

dimE V = dimF V.

We therefore denote the unique value by dimV and call it the

rank of V .

Proof It suffices to show: if Rm ∼= Rn as R–modules, then m = n.
Indeed, a finite-dimensional module V with a basis of size m is

isomorphic to Rm, so any two bases yield Rm ∼= Rn.

Let m be a maximal ideal of R; then k := R/m is a field. Tensor-

ing the isomorphism Rm ∼= Rn with k over R gives

k ⊗R Rm ∼= k ⊗R Rn.
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Proof (Continue)

Since k ⊗R R ∼= k and tensor commutes with finite direct sums,

k ⊗R Rm ∼= km, k ⊗R Rn ∼= kn

as k–vector spaces. Hence km ∼= kn as vector spaces, so m = n.
Therefore, any two bases of a finite-dimensional R–module have

the same cardinality.

Interpretation: If a module has two different bases, they must

contain the same number of elements. This number - the dimen-

sion or rank-measures the intrinsic “size” of the module, just as

dimension does for vector spaces.
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Examples of Dimension

Let R be a CRWU, m,n ∈ N.

1 dimRn = n, because each element (a1, . . . , an) can be

written uniquely as

(a1, . . . , an) = a1e1 + a2e2 + · · ·+ anen,

where ei = (0, . . . , 1︸︷︷︸
i

, . . . , 0) are linearly independent and

span Rn.

2 dimMm×n(R) = mn, because every matrix A = (aij) can be

expressed uniquely as A =
∑m

i=1

∑n
j=1 aijEij , where Eij has

1 in position (i, j) and 0 elsewhere. These mn matrices are

linearly independent and span Mm×n(R).
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Examples of Dimension

Let R be a CRWU, m,n ∈ N.

3 dim0 = 0, because the zero module {0} contains only the
zero element. The empty set ∅ is vacuously linearly

independent and spans {0}, so it serves as a basis.

4 dimR[x] = ∞, because the set {1, x, x2, x3, . . . } is linearly
independent and spans all polynomials. Every polynomial

f(x) = a0 + a1x+ · · ·+ anx
n is a finite R–linear combination

of these monomials.
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Span and Equivalent Descriptions

Definition:

Let R be a CRWU, V an R–module, and v1, . . . , vm ∈ V .

span{v1, . . . , vm} :=

{
m∑
i=1

λivi

∣∣∣∣∣ λ1, . . . , λm ∈ R

}

={w ∈ V | ∃λ1, . . . , λm ∈ R, w =

m∑
i=1

λivi }.

Remark 1 (Matrix image equals span of columns)

If A ∈ Mm×n(R) has column vectors c1, . . . , cn ∈ Rm, then

Im(A) = {Av | v ∈ Rn} = span{c1, . . . , cn} ⊆ Rm.

7



Span

Remark 2 (Span is a submodule)

span{v1, . . . , vm} is a submodule of V .

Diagrammatic View: A Span as a Submodule (Plane in R3)

x

y

z

span{v1, v2} ⊂ R3

v1
v2
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Proof of the Remark

Proof of Remark 1.

Write v = (λ1, . . . , λn)
> ∈ Rn. Then

Av = λ1c1 + · · ·+ λncn ∈ span{c1, . . . , cn}.

Thus Im(A) ⊆ span{cj}. Conversely, any linear combination∑
λjcj equals A(λ1, . . . , λn)

>, hence belongs to Im(A).
Therefore, equality holds.
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Proof of the Remark

Proof of Remark 2.

Let W := span{v1, . . . , vm}. If w =
∑

λivi and w′ =
∑

µivi, then
for any a, b ∈ R,

aw + bw′ =
∑

(aλi + bµi)vi ∈ W,

so W is closed under linear combinations, hence under addition

and R–scalar multiplication; thus W is a submodule of V .
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Example of a Span

Polynomial Module

Let S = {1, x, x2} ⊆ Q[x]. Then

spanQ(S) =
{
a0 + a1x+ a2x

2 | a0, a1, a2 ∈ Q
}
,

which is the Q–vector space (or Q–module) of all quadratic

polynomials.

Reasoning.

• Every quadratic polynomial p(x) = a0 + a1x+ a2x
2 can be

uniquely written as a linear combination of 1, x, x2.

• The set {1, x, x2} is linearly independent, since
c0 ·1 + c1x+ c2x

2 = 0 ⇒ c0 = c1 = c2 = 0.

• Therefore, {1, x, x2} forms a basis of spanQ(S).

Interpretation. Geometrically, the span operation constructs the

smallest subspace (submodule) of Q[x] that contains S.
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Definition and Notation

Let R be a CRWU, V,W be R–modules, and f : V → W a func-

tion.

Definition (Linear map / R–module homomorphism)

f is linear if for all v1, v2 ∈ V and λ ∈ R,

f(v1 + v2) =f(v1) + f(v2),

f(λv) =λf(v).

Notation

The set of all R–linear maps V → W is denoted

HomR(V,W ) or Hom(V,W ) orL(V,W ).
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Examples of Linear Maps

Let R be a CRWU, V,W be R–modules.

1. Zero map 0 : V → W , 0(v) = 0 is linear (both axioms hold

trivially).

2. Identity idV : V → V is linear.

3. Matrix map If V = Rn, W = Rm and A ∈ Mm×n(R), define
A(v) = Av. Then

A(v+w) = A(v+w) = Av+Aw, A(λv) = A(λv) = λ(Av),

so A is linear.

4. Integration on C0[0, 1]: Let V = W = C0[0, 1] over R = R
and

(If)(x) =

∫ x

0
f(t) dt.

Then I is linear by linearity of the integral:

I(f + g) = If + Ig, I(λf) = λ(If).
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Kernel - Image; Submodule Properties

Definitions

Let f ∈ HomR(V,W ).

ker f :={ v ∈ V | f(v) = 0W },
Im f :={ f(v) | v ∈ V } = {w ∈ W | ∃v ∈ V, w = f(v) }.

Proposition

Let f ∈ HomR(V,W ). Then ker f is a submodule of V , and Im f
is a submodule of W .
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Kernel - Image; Submodule Properties

Proof

If u, v ∈ ker f and λ, µ ∈ R, then

f(λu+ µv) = λf(u) + µf(v) = 0,

so λu+ µv ∈ ker f . Thus ker f ≤ V .

If y1 = f(v1), y2 = f(v2) and λ, µ ∈ R, then

λy1 + µy2 = λf(v1) + µf(v2) = f(λv1 + µv2) ∈ Im f.

Hence Im f ≤ W .
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Example
Let R = R and

V = W = { a0 + a1x+ a2x
2 | a0, a1, a2 ∈ R },

define D : V → V by Df = f ′.
Computations

D(2 + 4x+ x2) = 4 + 2x.

kerD = { a0 | a0 ∈ R } (constant polynomials),

ImD = { a0 + a1x | a0, a1 ∈ R } (linear polynomials).

Justification.

Df = 0 iff f is constant, hence kerD are the constants. If

f = a0 + a1x+ a2x
2, then Df = a1 + 2a2x is any linear

polynomial: given α+ βx choose a1 = α, a2 = β/2. Thus the
image equals the set of linear polynomials.
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Matrix Image as Span of Columns

Rn

coefficients (λi)

Rm

λ1c1 + · · ·+ λncn ∈ span{c1, . . . , cn}

A

choose v = (λ1, . . . , λn)
>

7→

Im(A) = span{c1, . . . , cn} ⊆ Rm.
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Proposition: f injective ⇐⇒ ker f = {0}

Proposition.

Let R be a CRWU, V,W be R–modules, and f ∈ HomR(V,W ).
Then

f is injective ⇐⇒ ker f = {0}.

Proof.

(⇒) If f is injective and v ∈ ker f , then f(v) = 0 = f(0), hence
v = 0. So ker f = {0}.
(⇐) Suppose ker f = {0} and f(v1) = f(v2). Then f(v1 − v2) = 0,
so v1 − v2 ∈ ker f , hence v1 − v2 = 0, i.e. v1 = v2. Thus f is

injective.
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Definition and Equivalent Characteriza-

tion

Definition (Isomorphism).

Let R be a CRWU, V,W R–modules, and f ∈ HomR(V,W ). We

say f is an isomorphism if there exists g ∈ HomR(W,V ) such that

g ◦ f = idV , f ◦ g = idW .

Equivalently

f is bijective. In this case V and W are isomorphic, written

V ∼= W .
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Flattening Matrices is an Isomorphism

Let R be a CRWU and m,n ∈ N. Put V = Mm×n(R) and W =
Rmn. Define

F : V → W, F



a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn


 =



a11
a12
...

a1n
a21
...

a2n
...

am1
...

amn



∈ Rmn.
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Flattening Matrices is an Isomorphism

Claim:

F is a linear isomorphism.

Linearity:

F (A+B) = F (A) + F (B) and F (λA) = λF (A) hold entrywise.

Injective:

F (A) = 0 implies all aij = 0, hence A = 0.

Surjective:

Given (b1, . . . , bmn)
> ∈ Rmn, place entries row-by-row into a

matrix B; then F (B) = (b1, . . . , bmn)
>.

Therefore F is a linear bijection, i.e. an isomorphism

Mm×n(R) ∼= Rmn.
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Universal Property of Free Modules

Proposition (Extension from a basis).

Let R be a CRWU, V a free R–module with basis

S = {e1, . . . , en} (possibly infinite index set), W an R–module,

and pick arbitrary w1, . . . , wn ∈ W . Then there exists a unique

linear map f ∈ HomR(V,W ) such that

f(ei) = wi, i = 1, . . . , n.
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Proof

Proof.

Every v ∈ V can be written uniquely as v =
∑n

i=1 λiei with λi ∈ R
(finite sum if S infinite). Define f(v) :=

∑n
i=1 λiwi. This is

well-defined by uniqueness of the coefficients. For linearity: if

v =
∑

λiei and u =
∑

µiei, then

f(v + u) =
∑

(λi + µi)wi =
∑

λiwi +
∑

µiwi = f(v) + f(u),

and f(αv) =
∑

(αλi)wi = α
∑

λiwi = αf(v). By construction
f(ei) = wi.

Uniqueness: if g is another linear map with g(ei) = wi, then for

any v =
∑

λiei, g(v) =
∑

λig(ei) =
∑

λiwi = f(v). Hence
g = f .
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Example

Rn ∼= FreeR(S)

Let R be a CRWU, n ∈ N, and S = {e1, . . . , en} a finite set.

Define

f : Rn → FreeR(S), f(1, 0, . . . , 0) = e1, . . . , f(0, . . . , 0, 1) = en,

and extend R–linearly. Then for (λ1, . . . , λn) ∈ Rn,

f(λ1, . . . , λn) = λ1e1 + · · ·+ λnen.

By the previous proposition, f is linear and bijective (its inverse

sends
∑

λiei to (λ1, . . . , λn)). Hence Rn ∼= FreeR(S).
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Coordinate Map with Respect to a Basis

Let R be a CRWU and V a finite-dimensional R–module with or-

dered basis e = (e1, . . . , en).
Definition (Coordinates). For v ∈ V written uniquely as v =
λ1e1 + · · ·+ λnen, define

(·)e : V → Rn, ve := (λ1, . . . , λn)
>.

Proposition. (·)e is a linear isomorphism.

Proof.

Linearity is immediate from linearity of coordinate extraction.

Injectivity: ve = 0 implies all coordinates = 0, hence v = 0.
Surjectivity: given (µ1, . . . , µn)

>, take v =
∑

µiei, then
ve = (µ1, . . . , µn)

>.
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Example

Setup. Let V = { a0 + a1x+ a2x
2 | a0, a1, a2 ∈ R } be the R–mod-

ule (or vector space, if R is a field) of quadratic polynomials, and

let e = (1, x, x2) be its ordered basis.

Coordinate Map

Every element v ∈ V can be uniquely written as

v = a0 · 1 + a1 · x+ a2 · x2,

so its coordinate vector with respect to e is

ve =

a0

a1

a2

 ∈ R3.
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Example

Interpretation.

• The coordinate map (·)e : V → R3 translates each

polynomial into its list of coefficients.

• It is a linear isomorphism — addition and scalar multiplication

of polynomials correspond exactly to those of their

coordinate vectors:

(p+ q)e = pe + qe, (λp)e = λpe.

• Hence V is algebraically identical to R3 under this basis, just

viewed in a different “language” — coefficients instead of

components.

Visualization. Think of the polynomial a0 + a1x+ a2x
2 as a point

in R3 whose coordinates are (a0, a1, a2) — the space of all

quadratic shapes parameterized by their coefficients.
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Hom is a Submodule of W V

Definition

Let W V denote all functions V → W with pointwise operations:

(f + g)(v) :=f(v) + g(v),

(λf)(v) :=λf(v).

Proposition.

HomR(V,W ) ⊆ W V is a submodule (closed under + and

R–scalars).
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Hom is a Submodule of W V

Proof.

If f, g ∈ HomR(V,W ) and λ ∈ R, for any v, u ∈ V :

(f + g)(v + u) =f(v + u) + g(v + u) = f(v) + f(u) + g(v) + g(u)

=(f + g)(v) + (f + g)(u),

(f + g)(αv) = f(αv) + g(αv) = αf(v) + αg(v) = α(f + g)(v).

So f + g is linear.
Similarly (λf)(v + u) = λf(v + u) = λf(v) + λf(u) and
(λf)(αv) = λαf(v) = α(λf)(v), hence λf is linear.

Therefore HomR(V,W ) is an R–submodule of W V .
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Example in R
h = 2D − 3 id on Quadratics

Let R = R and V = {a0+a1x+a2x
2} with basis e = (1, x, x2). Put

f = D, g = idV , h = 2f − 3g.

Then for p(x) = a0 + a1x+ a2x
2,

h(p) =2(a1 + 2a2x)− 3(a0 + a1x+ a2x
2)

=(−3a0 + 2a1) + (−3a1 + 4a2)x + (−3a2)x
2.

In coordinates pe = (a0, a1, a2)
>,

he(p) =

−3a0 + 2a1
−3a1 + 4a2

−3a2

 .
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Matrix of a Linear Map

Let V,W be finite-dimensional R–modules, with ordered bases

e = (e1, . . . , en) for V, f = (f1, . . . , fm) for W.

For A ∈ HomR(V,W ), write for each 1 ≤ j ≤ n:

A(ej) = a1jf1 + · · ·+ amjfm.

Definition. The matrix of A w.r.t. (e, f) is

(A)fe =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

 ∈ Mm×n(R).
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Example

Matrix of h = 2D − 3 id

With e = f = (1, x, x2) and the computations

h(1) = −3, h(x) = 2− 3x, h(x2) = 4x− 3x2,

their coordinate columns (w.r.t. e) are

[−3, 0, 0]>, [2,−3, 0]>, [0, 4,−3]>.

Hence

(h)fe =

−3 2 0
0 −3 4
0 0 −3

 .
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Composition Corresponds to Matrix Prod-

uct

Let U, V,W be finite-dimensional R–modules with ordered bases

e = (e1, . . . , ep), f = (f1, . . . , fm), g = (g1, . . . , gn).

Let A ∈ HomR(U, V ) and B ∈ HomR(V,W ). Then B ◦ A ∈
HomR(U,W ) and

(A)fe ∈ Mm×p(R), (B)gf ∈ Mn×m(R), (B ◦A)ge ∈ Mn×p(R),

with the identity

(B ◦A)ge = (B)gf (A)fe .

U V W
A B

B ◦A
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Proof

Proof.

For each j, write A(ej) =
∑m

i=1 αijfi and B(fi) =
∑n

k=1 βkigk.
Then

(B ◦A)(ej) =B
(∑

i

αijfi

)
=

∑
i

αij

(∑
k

βkigk

)
=
∑
k

(∑
i

βkiαij

)
gk.

Thus the (k, j)–entry of (B ◦A)ge is
∑

i βkiαij , i.e. the matrix

product (B)gf (A)fe .
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Summary

• Defined free and finite–dimensional R–modules; proved

dimension is well–defined for finite-dimensional modules

(IBN via reduction mod maximal ideals).

• Computed dimensions of Rn, Mm×n(R), 0, and R[x].

• Defined span; proved image of a matrix equals the span of

its columns; proved span is a submodule.

• Defined linear maps; verified linearity in key examples (zero,

identity, matrix, integral).

• Defined kernel and image; proved they are submodules;

computed them for D on quadratics.
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Thanks
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	Coordinate Isomorphism

