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Module over a Commutative Ring with
"Unity (CRWU)

Let R be a commutative ring with unity (CRWU), and let
(V,+,—,0) be an abelian (commutative) group under addition. A
scalar multiplication « : R x V' — V makes V an R—module if the
following hold for all A\, x € R and v,w € V:

(M) xv =A% (u*v) (Associativity of scalar mult.)
(A p)*xv=Axv+pu=xv (Distributivity over ring addition)
Ax(v+w)=Axv+ Axw (Distributivity over module addition)
(

lpxv="v Unital condition)

Notation: (V| +, x,0) is called an R—module. If R is a field, V' is a
vector space over R.



Interpretation and Diagram

The University of Manchester

Modules generalize vector spaces—where scalars come not from
a field, but from a ring.
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(M) = Axv



ISR :xarnples of z-Modules
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Let R be a CRWU, m,n € N.
1. Coordinate Module:

R" ={(a1,...,an) | a; € R}.
Addition and scalar multiplication defined by
(a1,..-yan) + (b1,...,b,) = (a1 + b1,...,an + by),
Ak (at,...,an) = (Aay, ..., \ay).

Then (R™, 4+, x) is an R—module. When R is a field, this is a vec-
tor space.
2. Matrix Module:

Minxn(R) = {[aijlmxn | aij € R},

with addition (A + B);; = a;; + b;;, and scalar multiplication
()\A)U — )\aij.



Examples (continued)

The University of Manchester

3. Zero Module: {0} withr«0 =0 for all r € R.
4. Free Module: Let S = {ey, ..., e,} be a finite set. Define

Freer(S) = {Z Aiei | Ai € R} .
=1
Addition and scalar multiplication:

(Mer + -+ Anen) + (n1e1 + -+ + pinen) = (A1 + pr)er + -+ (An + 4
r(Arer + -+ Anen) = (TA1)er + -+ (1An)en.

Then Freeg(S) is an R—module.



Free Module on Infinite Basis
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If S'is infinite, Freer(.S) consists of finite linear combinations:
A€, + -+ Ageip, A €R.
Example: S = {1,z,2%,23,...} then
Freer(S) = R|x],
the ring of polynomials over R—a free R—module with basis

{1,z,2%,...}



Linear Independence and Span
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Definition: Let V be an R—module, ¢, ...,¢e, € V.
1. Linear Independence: {e;,...,e¢,} is linearly independent if
AMer+ -+ Aen,=0=>X\1=---= X\, =0.

2. Linear Dependence: The set is linearly dependent if there
exist coefficients, not all zero, satisfying

e+ -+ MAe, =0.

3. Span:

n
SpanR{el,... ,en} = {Z)wez | A € R} .
i=1

4. Basis: Aset {e,...,e,} is abasis of V if it is linearly
independent and spans V.



Linear independence over Z and Q
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Example

Let Rbe QorZ, V = R?, v; = (2,0), v2 = (3,0). Then the vectors
v1 and vy are linearly dependent since 3v; — 2v9 = 0. When

R = Q, we can find reciprocals, and so v, = (3/2)v;. However,
when R = Z, we cannot express one of the vectors as a multiple
of the other.

Remark

If Ris afield and pyv1 + - - - + ppv, = 0 with p; # 0, then we can
divide:

However, for general modules (where R is not a field), division
may not be possible, so such reduction cannot be performed.



Standard Basis of R"
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For R™ define

er1 = (1,0,...,0), e =(0,1,0,...,0), ..., e, = (0,...,0,1).
Claim: {e;,...,e,} is a basis of R™.
Proof:

e Every v = (ay,...,a,) € R™ can be written uniquely as

v=ai1e1 + -+ anen.

e If >~ \e; =0, then all \; = 0. Hence independence.
Therefore {¢;} is a basis.
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Matrix Unit Basis of M,,..,(R)

For each (i, j) define E;; € M,x,(R) by

L, k=i, 1=},
Eij)u =
(Eij)u {0, otherwise.

Then {E;; |1 <i<m,1<j <n}isabasis of M,,xn(R).

Example (for m = n = 2):

1 0 0 1 0 0 0 0
E11—|:0 0}, E12—|:0 0]7 ]521—[1 0], E22—[0 1]

Any A = [Z Z} can be written as

A =aF1 4+ bE12 + cEy + dEss.



asrei Other Basis Examples
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Zero Module:
¢ is a basis of {0}.

Free Module:

If S'is a set, S itself forms a basis of Freer(S).

Polynomial Module:
For S = {1,z,22,...},

R[z] = Freeg(S)

with basis {1,z,22,...}.



Uniqueness of Representation

The University of Manchester

Proposition

Let R be a CRWU, V an R—-module, and S = {ey,...,e,} C V.
Then S is a basis of V' if and only if every v € V can be
expressed uniquely as

v=MAel+ -+ Aen, N ER.

Proof. (=) If S is a basis, then by definition it spans V', so such

A; exist. Suppose v = > \je; = > pie;. Then > (N — pi)e; = 0.
Linear independence implies A\; — p; = 0 for all . Hence unique-
ness.

(«=) If every v has a unique representation, then:

- Existence implies S spans V.

- Uniqueness implies S is linearly independent.

Thus S is a basis. [




Submodule
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Let R be a CRWU, V an R—module. A subset W C V is called a
submodule of V if:

1. (W, +) is a subgroup of (V, +),
2.Vre R,weW :rxweW.
Equivalently, W is a submodule iff

Viu€eR, vyweW, v+ pweW.



Null Space and Image as Submodules
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Let A € M,,xn(R).
1. Null Space:

Null(A) = {x € R" | Az = O0gm}.
Proof: If z,y € Null(A) and A\, i € R,
Az + py) = Mz + pAy = 0.

Hence closed under addition and scalar multiplication — submod-
ule of R™.
2. Image:

Im(A) ={Ax |z € R"} C R™

If y1 = Axq, yo = Axo, then for any A\, 4 € R,
A1+ pye = A(Axr + pxe) € Im(A).

Hence Im(A) is a submodule of R™. [
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Example with Numerical Matrix
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Let
A= [_12 2 _38] € Mars(Q).
Find Null(A):
A — 0 — {x1+2x2+3x3 =0,
—2x1 — 49 — 823 = 0.
Second equation is —2x first, redundant. Solve first:
T = —2T9 — 3x3.
Hence
x = (11,22, 23) = 22(—2,1,0) + x3(—3,0, 1).
Therefore
Null(4) = Spang{(-2,1,0),(-3,0,1)}.



ll Image of the Same Matrix (continued)

m(a) =spang {| 1| | 2] | %]}

Notice that

B R e E B B R R et

so only one of these is independent. Therefore,

- 1]}

dimg(Im(A4)) =1, dimg(Null(4)) = 2.
Observation (Rank—Nullity analogue):

Hence

dimg(Im(A)) + dimg(Null(4)) = 3 = number of columns.



Submodules as Linear Substructures
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Domain R" Codomain R™

Null(A)

~-
3
=

Interpretation:
e Null(A) lives in the domain R" (vectors mapped to zero)
e Im(A) lives in the codomain R™ (all possible outputs)

e Each is a submodule closed under addition and scalar
multiplication v



Remarks and Extensions
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Every vector space is a module, but not every module is a
vector space (lack of division in R).

Submodules play the same role as subspaces.

The null and image submodules generalize the kernel and
image of a linear map.

Free modules generalize coordinate spaces R".

If R is a principal ideal domain, many results from linear
algebra (rank, basis, independence) extend naturally.

Important note: Modules over non-fields can have surprising
behaviors — e.g., not every submodule has a complement, not
every module has a basis.



Summary of Lecture 4
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Defined an R—module as an abelian group with a compatible
scalar multiplication.

Showed that fora CRWU, R", M,,x,(R), and R[z] are
R—modules.

Introduced linear independence, span, and basis in
modules.

Proved characterization: S is a basis <= each v has a
unigue expression.

Defined submodules and proved closure criterion
v+ pw e W.
Proved that Null(A) and Im(A) are submodules.

Worked out complete example for A € Ms,3(Q), computing
both Null(A) and Im(A).
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