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Basic Definitions

• Natural numbers: N = {0, 1, 2, 3, . . . } or {1, 2, 3, . . . },
choice depends on convention.

• Positive naturals: N+ = {1, 2, 3, . . . }
• Integers: Z = {. . . ,−2,−1, 0, 1, 2, . . . }
• Positive integers: Z+ = {1, 2, 3, . . . }

• Rational numbers: Q =
{

p
q | p ∈ Z, q ∈ Z \ {0}

}
• Positive rationals: Q+ = {q ∈ Q | q > 0}
• Real numbers: R = {x | −∞ < x <∞}
• Positive reals: R+ = {x ∈ R | x > 0}

2



Basic Definitions
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Set-Builder / Predicate Notation

Let a property ϕ(x) and a set A

B = {x ∈ A | ϕ(x) is true}
means “the subset of A whose members satisfy property ϕ.”

Examples:

• Positive rational numbers can be written like

Q+ = {x ∈ Q | x > 0}, N = {n ∈ Z | n ≥ 0}

• If X is a set and n ∈ N, define

Xn = {(x1, x2, . . . , xn) | xi ∈ X for i = 1, . . . , n}.

• If m,n ∈ N, define the set of m× n matrices over X:

Mm×n(X) = { [aij ] | aij ∈ X, 1 ≤ i ≤ m, 1 ≤ j ≤ n} .
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Logical Connectives: Basic Laws

Let ϕ and ψ be logical statements (predicates). We have:

¬(¬ϕ) ≡ ϕ (negation),

ϕ ∧ ψ (conjunction/logical AND),

ϕ ∨ ψ (disjunction/logical OR),

ϕ⇒ ψ (implication),

ϕ ⇐⇒ ψ (bi-conditional, equivalence).

Some equivalences:

ϕ⇒ ψ ≡ ¬ϕ ∨ ψ, ¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ (De Morgan), . . .
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Quantifiers: ∀, ∃

Universal quantifier:

∀x ∈ A, ϕ(x) : for all x in A,ϕ(x) holds.

Existential quantifier:

∃x ∈ A, ϕ(x) : there is at least one x ∈ A with ϕ(x).

Negation rules:

¬
(
∀x ∈ Aϕ(x)

)
≡ ∃x ∈ A¬ϕ(x),

¬
(
∃x ∈ Aϕ(x)

)
≡ ∀x ∈ A¬ϕ(x).
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Continuity and Uniform Continuity

Continuity

Let I ⊂ R be an interval, f : I → R. We say f is continuous if

∀x ∈ I, ∀ε > 0, ∃δ > 0, ∀y ∈ I, |x− y| < δ ⇒ |f(x)− f(y)| < ε.

Uniform continuity

f is uniformly continuous if

∀ε > 0, ∃δ > 0, ∀x, y ∈ I, |x− y| < δ ⇒ |f(x)− f(y)| < ε.

Remark:

Uniform continuity is a stronger (global) condition: δ must work

for all x, not depend on x.
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Sets

Let A,B be sets.

Then
A ∪B = {x | x ∈ A or x ∈ B},

A ∩B = {x | x ∈ A and x ∈ B},
A \B = {x | x ∈ A and x /∈ B}.

Power set:

Boolean algebra of subsets

P(A) = {S | S ⊆ A } |P(A)| = 2|A|

8



Sets

Remarks:

• Each element of P(A) is a subset of A (including ∅ and A
itself).

• If A has n elements, then P(A) has 2n elements.

• Equipped with the operations of union (∪), intersection (∩),
and complement (c), P(A) forms a Boolean algebra.

• The smallest element (zero) is ∅, and the greatest element

(unity) is A.
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Visualisation

Venn diagrams to illustrate union, intersection, difference.
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Visualisation
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Ordered Pairs and Cartesian Product

Definition:

The ordered pair (a, b) is defined by the Kuratowski construction:

(a, b) = {{a}, {a, b}}.

One checks (a, b) = (a
′
, b

′
) iff a = a

′
and b = b

′
.

Cartesian product:

A×B = {(a, b) | a ∈ A, b ∈ B}.

Cardinality (finite case): If |A| = m, |B| = n, then

|A×B| = m · n.

More generally, for Xn, |Xn| = |X|n for finite X.
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Function and Equality of Functions

Let X,Y be sets. A function f : X → Y (X
f−→ Y ) is a subset

f ⊆ X × Y

such that

• For every x ∈ X, there is a unique y ∈ Y with (x, y) ∈ f .

Definition

Two functions f, g : X → Y are equal, f = g, if

∀x ∈ X, f(x) = g(x).

Example:

sin2 x+ cos2 x = 1 defines a function identically equal to constant

function 1(x) = 1, for domain R.
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Composition of Functions

If f : X → Y and g : Y → Z, define

g ◦ f : X → Z, (g ◦ f)(x) = g(f(x)).

Associativity: If h : Z →W , then

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Example:

Let X = {a, b, c}, Y = {0, 1}, Z = {w, x, y, z}. Define

f(a) = 0, f(b) = 1, f(c) = 0, g(0) = w, g(1) = z.

Then g ◦ f maps a 7→ w, b 7→ z, c 7→ w. You can draw arrow

diagrams: X
f−→ Y

g−→ Z
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Visualization
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Axiom of Set Equality:

Axiom (Extensionality). Let X and Y be two sets. Then

X = Y ⇐⇒
(
X ⊆ Y and Y ⊆ X

)
,

that is,

X = Y ⇐⇒
(
∀x (x ∈ X ⇒ x ∈ Y )

)
and

(
∀x (x ∈ Y ⇒ x ∈ X)

)
.

Interpretation: Two sets are equal if and only if they contain ex-

actly the same elements.

Example: Let A = {1, 2, 3} and B = {x ∈ N | x < 4}.

Proof.

(1) If x ∈ A, then x ∈ {1, 2, 3}, hence x < 4 and x ∈ B. Thus
A ⊆ B.

(2) If x ∈ B, then x < 4 and x ∈ N, so x ∈ {1, 2, 3} = A. Hence
B ⊆ A.

By the Axiom of Extensionality, A = B.
Corollary (Intersection Form): If A ∩ C = B ∩ C for every C,
then A = B since identical intersections imply identical elements.

�
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Identity Function and Its Property

Definition:

For any set X, the identity function is

idX : X → X, idX(x) = x ∀x ∈ X.

Proposition:

For any function f : X → Y ,
f ◦ idX = f, idY ◦ f = f.

Proof.

Let x ∈ X. By definition of composition:

(f ◦ idX)(x) = f(idX(x)) = f(x), since idX(x) = x. Hence
f ◦ idX = f.
Similarly, for the right composition:

(idY ◦ f)(x) = idY (f(x)) = f(x), since idY (y) = y for all y ∈ Y .
Thus idY ◦ f = f. �
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Injective, Surjective, Bijective

Let f : X → Y .

• f is injective (one-to-one) if

∀x1, x2 ∈ X, f(x1) = f(x2) ⇒ x1 = x2.

• f is surjective (onto) if

∀y ∈ Y, ∃x ∈ X, f(x) = y.

• f is bijective if it is both injective and surjective.

Examples:

• idX is bijective.

• f(x) = x2 on R → R is not injective (two preimages);

• restrict to [0,∞), then it becomes injective (and bijective onto

[0,∞)).
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Left Inverse, Right Inverse, and Relation

Let f : X → Y .

• A left inverse of f is a function g : Y → X such that

g ◦ f = idX .

• A right inverse of f is a function h : Y → X such that

f ◦ h = idY .

• If a function has both a left inverse and a right inverse, they

coincide and that common map is called the inverse f−1.

Proposition:

1. f has a left inverse ⇐⇒ f is injective.

2. f has a right inverse ⇐⇒ f is surjective.

3. f is bijective ⇐⇒ f has a two-sided inverse.

Proofs: ??? 19



Proof

(1) Left inverse ⇔ Injective.

(⇒) Assume there exists g : Y → X such that g ◦ f = idX . Let
f(x1) = f(x2). Applying g to both sides gives

g(f(x1)) = g(f(x2)) ⇒ idX(x1) = idX(x2) ⇒ x1 = x2.

Thus f is injective.

(⇐) Assume f is injective. For each y ∈ im(f), there exists a

unique x ∈ X such that f(x) = y. Define g : Y → X by

g(y) =

x, if y = f(x) for some x ∈ X,

x0, if y /∈ im(f),

where x0 ∈ X is fixed arbitrarily. Then for all x ∈ X, g(f(x)) = x,
hence g ◦ f = idX . Therefore, f has a left inverse.
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Proof

(2) Right inverse ⇔ Surjective.

(⇒) Assume there exists h : Y → X such that f ◦ h = idY . For
every y ∈ Y ,

f(h(y)) = y,

so y is an image of f . Hence f is surjective.

(⇐) Assume f is surjective. Then for each y ∈ Y there exists at

least one x ∈ X such that f(x) = y. Choose one such x (using

the Axiom of Choice if necessary), and define h(y) = x. Then
f(h(y)) = y for all y ∈ Y , i.e. f ◦ h = idY . Thus h is a right inverse

of f.
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Proof

(3) Bijective ⇔ Two–sided inverse.

(⇒) If f is bijective, it is both injective and surjective. From (1)

and (2) there exist g, h : Y → X such that g ◦ f = idX and

f ◦h = idY . But for a bijection, these must coincide (g = h = f−1).

Hence f−1 satisfies both identities:

f−1 ◦ f = idX , f ◦ f−1 = idY .

(⇐) If a function f has a two–sided inverse f−1, then f−1 ◦ f =
idX (injectivity) and f ◦ f−1 = idY (surjectivity).

Therefore, f is bijective. �
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Uniqueness of Inverse and Composition

Uniqueness of Inverse

If f has both left inverse g and right inverse h, then one shows

g = h. Thus the two-sided inverse is unique.

Theorem:

If f : X → Y and g : Y → Z are bijections, then g ◦ f is bijective

and

(g ◦ f)−1 = f−1 ◦ g−1.

Proof: ???
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Proof

Since f and g are bijections, each has an inverse function f−1 :
Y → X and g−1 : Z → Y satisfying:

f−1 ◦ f = idX , f ◦ f−1 = idY , g−1 ◦ g = idY , g ◦ g−1 = idZ .

Step 1: Show that g ◦ f is bijective.

Injectivity: Suppose (g ◦ f)(x1) = (g ◦ f)(x2). Then g(f(x1)) =
g(f(x2)). Since g is injective, it follows that f(x1) = f(x2). Apply-
ing injectivity of f , we get x1 = x2. Hence g ◦ f is injective.

Surjectivity: Let z ∈ Z. Since g is surjective, there exists y ∈ Y
such that g(y) = z. Since f is surjective, there exists x ∈ X such

that f(x) = y. Then

(g ◦ f)(x) = g(f(x)) = g(y) = z.

Thus every z ∈ Z has a preimage in X; therefore, g ◦ f is surjec-

tive.

Hence g ◦ f is bijective. 24



Proof

Step 2: Compute the inverse. We claim that (g ◦ f)−1 = f−1 ◦
g−1. To verify this, check both compositions:

(a) Left composition:

(f−1◦g−1)◦(g◦f) = f−1◦(g−1◦g)◦f = f−1◦idY ◦f = f−1◦f = idX .

(b) Right composition:

(g◦f)◦(f−1◦g−1) = g◦(f ◦f−1)◦g−1 = g◦idY ◦g−1 = g◦g−1 = idZ .

Both compositions give the identity maps on X and Z, respec-
tively. Thus (f−1 ◦ g−1) is indeed the inverse of (g ◦ f).
Conclusion:

(g ◦ f)−1 = f−1 ◦ g−1. �
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Bundles, Projection, and Sections

Definition:

Let E andM be sets, and let π : E →M be a surjection. We call

(E, π,M) a bundle overM , and π the projection map.

Definition:

A section is a (right) inverse map s :M → E such that

π ◦ s = idM .

Thus s “picks a point in each fiber” consistently.
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Bundles, Projection, and Sections

Definition:

For x ∈M , define the fiber

Ex = π−1(x) = {e ∈ E | π(e) = x}.

Then E is the disjoint union of its fibers:

E =
⊔
x∈M

Ex.

(Here
⊔

means disjoint union.)
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Visualization
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Example: Annulus as a Bundle

Take real numbers 0 ≤ r0 < r1. Define

E = {(x, y) ∈ R2 | r0 ≤ x2 + y2 ≤ r1}, M = [r0, r1],

and the projection

π : E →M, π(x, y) =
√
x2 + y2.

Then (E, π,M) is a bundle. The fiber over r ∈ [r0, r1] is

Er = {(x, y) | x2 + y2 = r2},

i.e. the circle of radius r. The total space is an annulus. This is an

example of an I-bundle (interval-bundle) over a circle base.

A section would pick one point on each circle: e.g. define

s(r) = (r, 0),

then π(s(r)) = r. 29



Visualization

• r1
r0
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Proposition

A function f : X → Y is bijective if and only if it has a two–sided

inverse; that is,

f is bijective ⇐⇒ ∃ g : Y → X such that g◦f = idX and f◦g = idY .

Proof (⇒) Assume f is bijective. Then f is injective and surjec-

tive.

Existence of inverse function: For each y ∈ Y , surjectivity en-
sures the existence of at least one x ∈ X such that f(x) = y.
Injectivity guarantees that this x is unique. Hence, we can define

a well–defined function g : Y → X by assigning g(y) = x, where
f(x) = y.
Now, for all x ∈ X:

(g ◦ f)(x) = g(f(x)) = x,

and for all y ∈ Y :
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Proof

(f ◦ g)(y) = f(g(y)) = y.

Thus g ◦ f = idX and f ◦ g = idY ; g is a two–sided inverse of f.

(⇐) Conversely, suppose there exists g : Y → X such that

g ◦ f = idX , f ◦ g = idY .

Injectivity: If f(x1) = f(x2), apply g to both sides:

g(f(x1)) = g(f(x2)) ⇒ idX(x1) = idX(x2) ⇒ x1 = x2.

Hence f is injective.
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Proof

Surjectivity: For any y ∈ Y , set x = g(y). Then

f(x) = f(g(y)) = (f ◦ g)(y) = idY (y) = y.

Therefore every y ∈ Y has a preimage, so f is surjective.

Since f is both injective and surjective, f is bijective. �
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Notes

• In the bundle context, a section gives a right inverse of π.

• If π also had a left inverse, that would force π to be injective,

which bundle projections typically are not (because fibers

often contain multiple points).

• Thus for a general bundle, π is surjective but not injective, so

it has sections, but no inverse redefining π as bijection.
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Summary and Roadmap

• We have defined standard sets (N,Z,Q,R) and positive

subsets.

• We introduced predicate/set-builder notation, Cartesian

products, and matrices.

• Reviewed logical connectives and quantifiers; gave

continuity, uniform continuity.

• Covered set operations (union, intersection, difference,

power set) and the Cartesian product.

• Defined functions, composition, identity, and equality of

functions.

• Introduced injectivity, surjectivity, bijectivity, and the

connection to inverses (left, right).

• Introduced bundles, projections, fibers, and sections, with a

concrete annulus example.
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Homework

Prove or disprove:

1. f injective ⇐⇒ f has a left inverse.

2. f has right inverse ⇒ f surjective.

3. f surjective ⇒ f has right inverse.

4. f bijective ⇐⇒ f invertible.

5. Decomposition into fibers is indeed a disjoint union:

E =
⊔

x∈M Ex is a disjoint decomposition into fibers.

If π : E →M is a surjection, then E =
⊔

x∈M π−1(x) and for

x 6= y, π−1(x) ∩ π−1(y) = ∅.
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Thanks
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